
Presenting Bayesian model output

Johannes Karreth

Applied Introduction to Bayesian Data Analysis

The purpose of this tutorial is to show you some options to work with and efficiently present output
from Bayesian models in article manuscripts: regression tables, regression plots, marginal effects,
predicted probabilities, and dot plots from factor models with uncertainty.

R code for each of the exercises is provided on https://github.com/jkarreth/Bayes and
http://www.jkarreth.net/bayes-cph.html. Almost all examples in this tutorial also show
up in my presentation slides. You can reproduce what I do in the slides by working through the R
code associated with each slide set, posted on the workshop website. Don’t hesitate to contact me if
you have any questions or run into problems.

The tasks below assume you have access to data and models you can use for postestimation. If you
don’t have models ready, I provide examples in my slides that you can reproduce.

1 Working with JAGS output
For most of the exercises in this tutorial (and your own analyses), you will want to work with JAGS
output directly. One way to get this output in a form that you can use for the applications below is
to follow these steps:

1. Convert your JAGS/BUGS output into an MCMC list

• If you work with JAGS from the command line, or with WinBUGS or OpenBUGS, read
the output into R using the coda package:

– Fit your model in WinBUGS/OpenBUGS/JAGS, and save the coda files in your
working directory.

– Name these files and use a common stem, for instance mymodel chain1.txt,
mymodel chain2.txt, and mymodel index.txt.

– In R, load the coda package:
> library(coda)

– Now, read your chain and index files into R.
– Set your working directory:

> setwd("/Users/johanneskarreth/R/Bayes/myproject")

– Read in your JAGS output. This requires that the chains and index files (see above)
are in your working directory.
> chain1 <- read.coda("mymodel_chain1.txt", "mymodel_index.txt")

> chain2 <- read.coda("mymodel_chain2.txt", "mymodel_index.txt")

> mymodel.mcmc <- as.mcmc.list(list(chain1, chain2))

• If you work with R2jags/R2WinBUGS/R2OpenBUGS, you can convert your jags/bugs
object mymodel.fit into an MCMC list using:

– > mymodel.mcmc <- as.mcmc(mymodel.fit)

2. Convert the mcmc list into a matrix and then a data frame:

• > mymodel.mat <- as.matrix(mymodel.mcmc)

> mymodel.dat <- as.data.frame(mymodel.mat)

1

https://github.com/jkarreth/Bayes
http://www.jkarreth.net/bayes-cph.html

• In this matrix/dataframe, each row contains one iteration from your samples, and each
column identifies one parameter (such as regression coefficients)

3. If necessary, use the grep() function to easily extract the columns you will need for post
processing. For instance, if you monitored a variety of parameters, but need only regression
coefficients, which you named beta[1], beta[2], etc., you can do the following:

• > mymodel.betas <- mymodel.dat[, grep("beta[", colnames(mymodel.dat), fixed=T)]

2 Regression tables
Bayesian variants of the regression model don’t differ much in their interpretation from frequentist
models—aside from the interpretation of uncertainty. Hence, if you want to present a regression ta-
ble in your paper, a “Bayesian” regression table will look very similar to the “frequentist” regression
tables you are all familiar with. For Bayesian models, you want to display the standard deviation of
the posterior estimates in lieu of coefficient standard errors (Table 1). Alternatively, you may choose
to display the 95% credible interval besides (or below) the posterior mean (Table 2).

Table 1: Posterior estimates: Moral integration of American cities.

Posterior mean Posterior SD
Intercept 19.69 1.24
Diversity -0.11 0.02
Mobility -0.19 0.04
N 43

Table 2: Posterior estimates: Moral integration of American cities.

Posterior mean 95% CI
Intercept 19.69 [17.21; 22.14]
Diversity -0.11 [-0.14; -0.07]
Mobility -0.19 [-0.26; -0.12]
N 43

Exercise 1. Estimate a quick Bayesian linear model. Present your model output in a regression
table with either (a) standard deviations of or (b) 95% credible intervals of the posterior mean for
each coefficient. When comparing different (nested) models, consider including a goodness-of-fit
measure in your table.

• If you use R2jags or R2WinBUGS, you can extract these quantities from the model or MCMC
objects and use xtable to process them for LATEX or HTML (for use in Word documents).

– You can access the summary table from an R2jags or R2WinBUGS object (e.g., named
angell.fit) and then process it with xtable:

> angell.fit$BUGSoutput$summary[, c(1, 2, 3, 7)]

>

> ## mean sd 2.5% 97.5%

> ## alpha 19.6053268 1.23238698 17.0721902 21.94372377

> ## beta1 -0.1066131 0.01738493 -0.1416944 -0.07276382

> ## beta2 -0.1842899 0.03744703 -0.2568409 -0.10719614

> ## deviance 192.6914225 2.95255745 188.9477266 200.11577668

>

> xtable(angell.fit$BUGSoutput$summary[, c(1, 2, 3, 7)])

– The file regression.table.R on https://github.com/jkarreth/Bayes shows
an additional convenient option for making tables.

2

https://github.com/jkarreth/Bayes

3 Regression dot plots
Coefficient dot plots (or caterpillar plots) are a more intuitive way to present regression results. The
reader can evaluate the size and significance of relationships more easily, and if the coefficients are
on a comparable scale, dot plots make it more convenient to compare the size of relationships or
effects. If you search the web for regression coefficient plots, you will find a variety of solutions. As

-0.30 -0.20 -0.10 0.00

Diversity
Mobility

(a) Using the coefplot command

-0.25 -0.15 -0.05 0.05

Mobility
Diversity

(b) Using the caterplot command

Figure 1: Regression coefficient plots.

canned functions, R offers the coefplot command in the arm package, the caterplot command in
the mcmcplots package, and a few more. And, you can easily write script for your own dot plot that
you can customize. One such example is at https://github.com/jkarreth/JKcoefggplot.

Exercise 2. Present your model output as a regression coefficient dot plot, including 95% credible
intervals.

• Make sure that the output is stored in R as an MCMC object. Now, you can use the caterplot
command in the package mcmcplots to produce a dot plot with your regression coefficients.

• If you would like to generate your own plot, create vectors for the mean posterior estimates,
their standard deviation, and the coefficient/variable names you would like to use in your plot.

• Now, you can make a dot plot by hand, or by using the coefplot package.

• The file regression.dotplot.R on https://github.com/jkarreth/Bayes has step-
by-step code for these two methods.

• You can also try and use the JKcoefggplot coefficient plot function on my Github repository
for a more customizable plot.

4 Conditional effects: interactions
Conditional effects from interaction terms cannot be adequately represented in a standard regression
table (Brambor, Clark, and Golder, 2006). In a frequentist regression model, you can calculate the
conditional effect of x1 across the range of a moderator x2 by using the following equations for the
effect and its variance:

∂y
∂x1

= β̂1 + β̂3 × x2 (1)

σ
2 = var(β̂1)+ x2×var(β̂2)+2× x2× cov(β̂1β̂3) (2)

In a Bayesian model, you can take advantage of the posterior variance to calculate the variance of
the effect. The results should be virtually identical.

Exercise 3. Estimate a regression model using the example dataset InteractionEx from Dave
Armstrong’s DAMisc package, of the form:

yi = α +β1x1i +β2x2i +β3x3i + εi (3)

and present the effect of x1 across the range of x2.

• The file interaction.instructions.R on https://github.com/jkarreth/Bayes has
code with solutions for a frequentist and a Bayesian interaction model.

3

https://github.com/jkarreth/JKcoefggplot
https://github.com/jkarreth/Bayes
https://github.com/jkarreth/Bayes

0.25

0.50

0.75

1.00

−3 −2 −1 0 1 2
X2

C
on

di
tio

na
l e

ffe
ct

 o
f X

1

Figure 2: Conditional effects for x1 across the range of x2. Bayesian results: blue; frequentist
results: red. The purple overlap indicates virtual identity of the two results.

5 Predicted probabilities
For nonlinear models, predicted probabilities are usually the most intuitive option to present in-
terpretable results to readers. The most straightforward way to use them is to plot the predicted
probability of the outcome across the simulated range of a predictor. To do this using the output of
a Bayesian model for binary outcomes, follow the steps below.

Exercise 4. Estimate a Bayesian binary logit, ordered logit, or multinomial logit model and present
predicted probabilities across the range of a substantively interesting covariate.

• Import the chains containing the coefficients from your BUGS/JAGS model, after monitoring
the posterior coefficient distributions.

• Generate a vector with the simulated range of x1 (here, age).

• Generate vectors set at desired values of the other covariates, with the same length as the
simulated predictor from the previous step. Don’t forget to generate a vector of 1s for the
intercept.

• Make a dataset/dataframe with the simulated values.

• Multiply x1 by the coefficients from your BUGS or JAGS output.

• Transform the linear predictions to probabilities.

• Generate mean predictions over the n (from BUGS/JAGS iterations) sampled values of the
coefficients.

• Generate credible intervals, using the standard deviation (or percentiles) from your BUGS or
JAGS output.

• Plot mean probability against the full (simulated) range of x1.

• Add credible intervals.

4

Age

P
ro
ba
bi
lit
y

0.2

0.4

0.6

0.8

Never

0 50 100 150

Seldom

0 50 100 150

Occasionally

0.2

0.4

0.6

0.8

Frequently

Figure 3: Example for plotting predicted probabilities for ordinal/categorical outcomes (here: on an
ordinal scale from 1 to 4) across the (simulated) range of an independent variable (here: Age).

• The files logit.pp.plot.instructions.R and ologit.pp.plot.instructions.R on
https://github.com/jkarreth/Bayes show how this can be done.

6 Proportional reduction of error
One measure of fit for models on categorical data (logit, ordered logit, multinomial logit) is to
compare the predicted categories for each observation to the modal prediction of the model (i.e. a
model that predicts for each observation the category matching the modal outcome in the observed
data). When you fit a Bayesian model, you can obtain a posterior distribution for this measure of
proportional reduction of error (PRE). On how to calculate the PRE, read (for instance) section 4 in
Herron (1999). Comparing the distributions of the PREs of nested models than allows introducing
(un)certainty to making statements on comparing model fits.

Exercise 5. Fit a binary, ordered, or multinomial logit model and assess model fit through the
posterior distribution of the PRE. The file ologit.pp.instructions.R on https://github.

com/jkarreth/Bayes shows how this can be done.

7 Factor dot plots
One key advantage of using Bayesian factor analysis is that you will obtain uncertainty estimates
around the estimated factor scores. This is useful to ascertain differences between subjects’ esti-
mated factor scores: how meaningful are these differences really? For an illustration, see Treier and
Jackman (2008).

Exercise 6. After estimating a Bayesian factor model, create a dot plot that graphically presents the
uncertainty (via 95% credible intervals) around your estimated factor scores. The file factor.dotplot.R
on https://github.com/jkarreth/Bayes shows how this can be done.

• First, extract the posterior distribution of your predicted factor scores from your BUGS/JAGS
output.

• Identify the quantities of interest (mean, lower and upper bound of the credible interval) in
this output.

5

https://github.com/jkarreth/Bayes
https://github.com/jkarreth/Bayes
https://github.com/jkarreth/Bayes
https://github.com/jkarreth/Bayes

• Arrange your output in a meaningful order (most likely, from low to high predicted factor
scores; or by other qualities of interest, such as alphabetic observation IDs, if applicable).

• Produce a factor dot plot as in Figure 4.

• The file factor.dotplot.R on https://github.com/jkarreth/Bayes shows also shows
how this can be done.

Latent trait

latent.mean

latent[660]

latent[651]

latent[502]

latent[1230]

latent[565]

latent[773]

latent[738]

latent[879]

latent[337]

latent[1232]

latent[982]

latent[677]

latent[873]

latent[130]

latent[898]

latent[1108]

latent[512]

latent[313]

latent[505]

latent[1135]

latent[125]

latent[748]

latent[271]

latent[1268]

latent[1162]

latent[1332]

latent[437]

latent[164]

latent[1346]

latent[1309]

latent[823]

latent[113]

latent[423]

latent[510]

latent[1082]

latent[644]

latent[777]

latent[149]

latent[800]

latent[415]

latent[276]

latent[1287]

latent[726]

latent[196]

latent[1341]

latent[1354]

latent[654]

latent[776]

latent[1329]

latent[88]

0.4 0.6 0.8 1.0 1.2 1.4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Using the lattice package

Latent trait

Latent trait

latent[660]
latent[651]
latent[502]

latent[1230]
latent[565]
latent[773]
latent[738]
latent[879]
latent[337]

latent[1232]
latent[982]
latent[677]
latent[873]
latent[130]
latent[898]

latent[1108]
latent[512]
latent[313]
latent[505]

latent[1135]
latent[125]
latent[748]
latent[271]

latent[1268]
latent[1162]
latent[1332]

latent[437]
latent[164]

latent[1346]
latent[1309]

latent[823]
latent[113]
latent[423]
latent[510]

latent[1082]
latent[644]
latent[777]
latent[149]
latent[800]
latent[415]
latent[276]

latent[1287]
latent[726]
latent[196]

latent[1341]
latent[1354]

latent[654]
latent[776]

latent[1329]
latent[88]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.4 0.6 0.8 1.0 1.2

(b) Using the ggplot2 package

Figure 4: Dot plots for factor scores.

Hint: The dot plot becomes cluttered as the number of observations increases, so be sure to inspect
your data first. For an example with many observations, I used the following code to only plot 50
random draws from the 1,428 observations in the data for illustrative purposes:

> dat <- dat[sample(1:nrow(dat), 50, replace=FALSE),]

In your applied work, it will usually only make sense to produce dot plots for up to 100 observations,
or more if split into several plots. If you have time-series or panel data, it might make sense to only
present plots for one panel or time unit, or split the observations over several plots.

References
Brambor, Thomas, William R. Clark, and Matt Golder. 2006. “Understanding Interaction Models:

Improving Empirical Analyses.” Political Analysis 14 (1): 63–82.

Herron, Michael C. 1999. “Postestimation Uncertainty in Limited Dependent Variable Models.”
Political Analysis 8 (1): 83–98.

Treier, Shawn, and Simon Jackman. 2008. “Democracy as a Latent Variable.” American Journal of
Political Science 52 (1): 201–217.

6

https://github.com/jkarreth/Bayes

	Working with JAGS output
	Regression tables
	Regression dot plots
	Conditional effects: interactions
	Predicted probabilities
	Proportional reduction of error
	Factor dot plots

