
Tutorial 12: Various types of model checks
Johannes Karreth

RPOS 517, Day 12

This tutorial shows you:

• how to specify quadratic terms in regression models
• how to use residuals to interpret model quality

Note on copying & pasting code from the PDF version of this tutorial: Please note that you may
run into trouble if you copy & paste code from the PDF version of this tutorial into your R script. When the
PDF is created, some characters (for instance, quotation marks or indentations) are converted into non-text
characters that R won’t recognize. To use code from this tutorial, please type it yourself into your R script or
you may copy & paste code from the source file for this tutorial which is posted on my website.

Note on R functions discussed in this tutorial: I don’t discuss many functions in detail here and
therefore I encourage you to look up the help files for these functions or search the web for them before you use
them. This will help you understand the functions better. Each of these functions is well-documented either
in its help file (which you can access in R by typing ?ifelse, for instance) or on the web. The Companion to
Applied Regression (see our syllabus) also provides many detailed explanations.

As always, please note that this tutorial only accompanies the other materials for Day 12 and that you are
expected to have worked through the reading for that day before tackling this tutorial.

Nonlinear relationships: quadratic terms

So far, we have not encountered serious violations of the assumption of linearity - a linear relationship
between predictors and outcome. But this assumption simply means that we impose a linear structure on the
relationship between x and y. Coefficient estimates from a regression model will not reveal this.

Theoretical example

Theories might often make predictions of the form, “as x increases, y first increases, and then drops again”. An
example for this is the Kuznets curve in economics, suggesting that as countries developed, income inequality
first increased, peaked, and then decreased (summarized, for instance, in Acemoglu and Robinson 2002). This
implies a so-called curvilinear relationship between economic development and inequality: both poor and rich
countries have low inequality, but middle-income countries should exhibit high levels of inequality.

Example with simulated data

Take the following example:

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -91.650 -5.757 3.239 9.980 28.822
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.1480 0.8235 -9.895 < 2e-16 ***
## x 0.8155 0.2559 3.186 0.00155 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.02 on 425 degrees of freedom
## Multiple R-squared: 0.02333, Adjusted R-squared: 0.02103
## F-statistic: 10.15 on 1 and 425 DF, p-value: 0.001547

Perhaps you might notice the low R2 value, but that itself is not indicative of problems. Examining the
residual plots, however, reveals that the the model produces residuals that are grouped below 0 at low and
high values of x:
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In this case, the residuals strongly indicate a (negative) quadratic relationship between x and y. Plotting x
against y and adding the regression line from the model we just fit shows that imposing a linear relationship
misses the true structure of the data quite a bit:
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To account for a quadratic relationship in the regression model, we enter a squared term of the predictor
(x2), using the code I(xˆ2).

##
## Call:
## lm(formula = y ~ x + I(x^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -32.166 -6.533 0.121 6.870 24.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.18336 0.55212 2.143 0.0327 *
## x 1.11205 0.14338 7.756 6.59e-14 ***
## I(x^2) -0.90137 0.02946 -30.601 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.511 on 424 degrees of freedom
## Multiple R-squared: 0.6956, Adjusted R-squared: 0.6942
## F-statistic: 484.4 on 2 and 424 DF, p-value: < 2.2e-16
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Example with survey data

A second, less dramatic but still consequential example with real-world data illustrates the point as well.
Here I’m using a dataset on the wages of 3680 Norwegian survey respondents. The data are taken from the
European Social Survey’s training module at http://essedunet.nsd.uib.no/cms/topics/multilevel/ch1/5.html.

wages.dat <- read.csv("http://www.jkarreth.net/files/ess_wages.csv")
summary(wages.dat)

## wage edyears age female
## Min. : 25.00 Min. : 0.000 Min. :16.0 Min. :0.0000
## 1st Qu.: 71.00 1st Qu.: 1.000 1st Qu.:30.0 1st Qu.:0.0000
## Median : 83.33 Median : 3.000 Median :39.0 Median :0.0000
## Mean : 90.11 Mean : 2.651 Mean :39.5 Mean :0.4696
## 3rd Qu.:102.45 3rd Qu.: 3.000 3rd Qu.:48.0 3rd Qu.:1.0000
## Max. :343.75 Max. :11.000 Max. :74.0 Max. :1.0000
## egp
## Lower service class:1044
## Routine non-manual :1139
## Skilled workers : 607
## Unskilled workers : 598
## Upper service class: 292
##

These data contain the following variables:
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Variable Description
wage Hourly wage in Norwegian kronor
edyears Years of non-compulsory education
age Age in years
female 1 if female, 0 if male
egp Type of occupation

Fitting a model assuming linear relationships between each predictor and respondents’ wages returns the
following results:

mod <- lm(wage ~ edyears + age + female + egp, data = wages.dat)
summary(mod)

##
## Call:
## lm(formula = wage ~ edyears + age + female + egp, data = wages.dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -94.100 -13.761 -2.858 8.719 234.155
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 78.81362 1.94612 40.498 <2e-16 ***
## edyears 3.23882 0.21025 15.404 <2e-16 ***
## age 0.47133 0.03313 14.228 <2e-16 ***
## female -17.10797 0.94132 -18.174 <2e-16 ***
## egpRoutine non-manual -13.17149 1.21909 -10.804 <2e-16 ***
## egpSkilled workers -12.60142 1.42218 -8.861 <2e-16 ***
## egpUnskilled workers -12.57560 1.44120 -8.726 <2e-16 ***
## egpUpper service class 4.09760 1.68588 2.431 0.0151 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.5 on 3672 degrees of freedom
## Multiple R-squared: 0.3484, Adjusted R-squared: 0.3471
## F-statistic: 280.4 on 7 and 3672 DF, p-value: < 2.2e-16
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## Test stat Pr(>|t|)
## edyears -0.488 0.626
## age -10.724 0.000
## female 0.635 0.525
## egp NA NA
## Tukey test 2.283 0.022

Here, the residual plot for the age variable does suggest a nonlinear relationship. Adding it to the model
returns the following results:
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mod2 <- lm(wage ~ edyears + age + I(age^2) + female + egp, data = wages.dat)
summary(mod2)

##
## Call:
## lm(formula = wage ~ edyears + age + I(age^2) + female + egp,
## data = wages.dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90.899 -13.342 -2.936 8.242 231.857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.785293 4.279082 8.830 < 2e-16 ***
## edyears 3.139944 0.207269 15.149 < 2e-16 ***
## age 2.615905 0.202624 12.910 < 2e-16 ***
## I(age^2) -0.025977 0.002422 -10.724 < 2e-16 ***
## female -16.956516 0.927151 -18.289 < 2e-16 ***
## egpRoutine non-manual -11.588935 1.209635 -9.581 < 2e-16 ***
## egpSkilled workers -11.104731 1.407543 -7.889 3.97e-15 ***
## egpUnskilled workers -10.905792 1.427856 -7.638 2.80e-14 ***
## egpUpper service class 4.181041 1.660322 2.518 0.0118 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.13 on 3671 degrees of freedom
## Multiple R-squared: 0.3682, Adjusted R-squared: 0.3668
## F-statistic: 267.4 on 8 and 3671 DF, p-value: < 2.2e-16

And showing the regression line from the first model (black) and second (red) illustrates the meaning of the
squared term.
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Using residuals to check and improve models

You’ve already worked with residuals a lot, but here is one more way they can be used to detect potential
omitted variables in a regression model. As an example, we’ll work with the “Angell” data from John Fox’s
“car” package. See http://socserv.socsci.mcmaster.ca/jfox/Books/Applied-Regression-3E/datasets/Angell.pdf
for a description of these data, which come from R. C. Angell (1951), “The moral integration of American
Cities,” American Journal of Sociology, 57 (part 2): 1-140. The dataset contains 43 rows; each is one American
city. The variables are:

Variable Description
moral Composite of crime rate and welfare expenditures.
hetero Ethnic heterogenity, from percentages of nonwhite and foreign-born white residents.
mobility Geographic mobility: from percentages of residents moving into and out of the city.
region E = Northeast, MW = Midwest, S = Southeast, W = West

The outcome variable is Angell’s morality index.

angell.dat <- read.csv("http://www.jkarreth.net/files/angell.csv")
summary(angell.dat)

## moral hetero mobility region city
## Min. : 4.20 Min. :10.60 Min. :12.10 E : 9 Akron : 1
## 1st Qu.: 8.70 1st Qu.:16.90 1st Qu.:19.45 MW:14 Atlanta : 1
## Median :11.10 Median :23.70 Median :25.90 S :14 Baltimore : 1
## Mean :11.20 Mean :31.37 Mean :27.60 W : 6 Birmingham: 1
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## 3rd Qu.:13.95 3rd Qu.:39.00 3rd Qu.:34.80 Bridgeport: 1
## Max. :19.00 Max. :84.50 Max. :49.80 Buffalo : 1
## (Other) :37

library(psych)

##
## Attaching package: 'psych'
##
## The following object is masked from 'package:car':
##
## logit

multi.hist(angell.dat[, c(1:3)], ncol = 3)

Histogram, Density, and Normal Fit
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mod <- lm(moral ~ hetero + mobility, data = angell.dat)

Plotting observed against predicted values can reveal which observations the model over- and under-predicts:

angell.dat$predicted <- fitted(mod)
plot(x = angell.dat$moral, y = angell.dat$predicted,

xlab = "Observed Morality", ylab = "Predicted Morality", pch = 20,
col = "gray")

abline(a = 0, b = 1)
text(x = angell.dat$moral, y = angell.dat$predicted,

labels = angell.dat$city, cex = 0.7)
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In the plot above, the line shows the perfect concordance between observed and predicted morality. For
observations to the left of the line, the model predicts higher than actual morality; for observations to the
right of the line, the model predicts lower than actual morality. Patterns in this plot can suggest potential
omitted variables that should be in the model. Can you think of any omitted variables that this particular
plot suggests?

Other formal checks for violations of the regression assumptions

Most of the diagnostics we’ve discussed so far relied on visual interpretation of residual plots. Statisticians
have developed a larger number of more formal tests for violations of the regression assumptions; most of
them are discussed in AR. Often, you can “eyeball” violations of the assumptions in residual plots, but
more formal tests can be useful. Overall, though, the important question you should usually ask is whether
potential violations of the OLS assumptions bias estimation results and whether they affect the standard
errors for coefficient estimates.
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