
Tutorial 9: Regression Diagnostics I
Johannes Karreth
RPOS 517, Day 9

This tutorial shows you:

• how to use and interpret dummy variables in linear regression
• how to diagnose outliers in a multiple regression model
• how to assess the influence of outliers on regression results

Note on copying & pasting code from the PDF version of this tutorial: Please note that you may
run into trouble if you copy & paste code from the PDF version of this tutorial into your R script. When the
PDF is created, some characters (for instance, quotation marks or indentations) are converted into non-text
characters that R won’t recognize. To use code from this tutorial, please type it yourself into your R script or
you may copy & paste code from the source file for this tutorial which is posted on my website.

Note on R functions discussed in this tutorial: I don’t discuss many functions in detail here and
therefore I encourage you to look up the help files for these functions or search the web for them before you use
them. This will help you understand the functions better. Each of these functions is well-documented either
in its help file (which you can access in R by typing ?ifelse, for instance) or on the web. The Companion to
Applied Regression (see our syllabus) also provides many detailed explanations.

As always, please note that this tutorial only accompanies the other materials for Day 9 and that you are
expected to have worked through the reading for that day before tackling this tutorial.

Dummy variables in regression

Some of you are working with so-called dummy variables in your replication assignments, so we will briefly
explore how these variables are used in multiple regression. Dummy variables are also explained well in
chapter 7 of AR (assigned on Day 11), but it doesn’t hurt to explore them earlier. Dummy variables are
binary indicators that are set to 1 for all observations matching a particular classification and 0 to all other
observations. For instance, a dummy variable in a survey for married respondents will be coded the following
way:

married =
{

1, if respondent is married
0, otherwise

Survey data example: Attitudes toward Hillary Clinton

We’ll start with an example dataset that I’ve taken from the accompanying materials to Kellstedt and
Whitten’s Fundamentals of Political Science Research. This dataset is a modified extract from the 1996
edition of the (American) National Election studies. This dataset has 1714 observations and 8 variables:

Variable Description
demrep Party identification (1 = strong Democrat, 7 = strong Republican)
clinton.therm Feeling thermometer toward Hillary Clinton
dem.therm Feeling thermometer toward the Democrats
female Female (1 = yes, 0 = no)
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Variable Description
age Age in years
educ Education (1 = 8 grades or less, 7 = advanced degree)
income Income (1 = less than $2999, 24 = $105,000 or more)
region Northeast, North Central, South, or West

nes.dat <- read.csv("http://www.jkarreth.net/files/nes1996subset.csv")
summary(nes.dat)

## demrep clinton.therm dem.therm female
## Min. :1.000 Min. : 0.00 Min. : 0.00 Min. :0.0000
## 1st Qu.:3.000 1st Qu.: 30.00 1st Qu.: 40.00 1st Qu.:0.0000
## Median :4.000 Median : 60.00 Median : 60.00 Median :1.0000
## Mean :4.327 Mean : 52.81 Mean : 58.86 Mean :0.5519
## 3rd Qu.:5.000 3rd Qu.: 70.00 3rd Qu.: 70.00 3rd Qu.:1.0000
## Max. :7.000 Max. :100.00 Max. :100.00 Max. :1.0000
## NA's :385 NA's :29 NA's :27
## age educ income region
## Min. :18.00 Min. :1.000 Min. : 1.00 North Central:458
## 1st Qu.:34.00 1st Qu.:3.000 1st Qu.:11.00 Northeast :260
## Median :44.00 Median :4.000 Median :16.00 South :642
## Mean :47.54 Mean :4.105 Mean :15.03 West :354
## 3rd Qu.:61.00 3rd Qu.:6.000 3rd Qu.:20.00
## Max. :93.00 Max. :7.000 Max. :24.00
## NA's :2 NA's :3 NA's :150

Say you are interested in explaining why some respondents exhibit a more positive attitude toward Hillary
Clinton than others. You could use bivariate regression to test the (somewhat obvious) argument that
Republican respondents might be less likely to approve of Clinton than more Democratic respondents. First,
you may want to means-center the party ID variable for ease of interpretation:

nes.dat$demrep.ctr <- nes.dat$demrep - median(nes.dat$demrep, na.rm = TRUE)
m1 <- lm(clinton.therm ~ demrep.ctr, data = nes.dat)
plot(x = jitter(nes.dat$demrep.ctr), y = nes.dat$clinton.therm,

xlab = "Party ID (Democratic -> Republican)",
ylab = "Clinton thermometer")

abline(m1, col = "red")
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You might have a theory that female respondents are more likely to hold a positive attitude toward Hillary
Clinton than male respondents. Based on what you’ve learned so far, you can account for this by “controlling”
for gender.

m2 <- lm(clinton.therm ~ demrep.ctr + female, data = nes.dat)
library(texreg)
screenreg(list(m1, m2))

##
## =====================================
## Model 1 Model 2
## -------------------------------------
## (Intercept) 54.17 *** 50.55 ***
## (0.75) (1.09)
## demrep.ctr -10.61 *** -10.31 ***
## (0.53) (0.53)
## female 6.72 ***
## (1.47)
## -------------------------------------
## R^2 0.24 0.25
## Adj. R^2 0.23 0.25
## Num. obs. 1316 1316
## =====================================
## *** p < 0.001, ** p < 0.01, * p < 0.05

2. How do you interpret these results?

A good way to examine the role of dummy variables in regression is to visualize them in a scatterplot. Because
a dummy variable can only take on two values, a dummy variable only shifts the intercept (ŷ when x = 0).
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with(nes.dat, plot(x = jitter(demrep.ctr), y = clinton.therm, type = "p",
xlab = "Party ID (Democratic -> Republican)",
ylab = "Clinton thermometer"))

abline(v = 0, col = "gray")
abline(a = coef(m1)[1], b = coef(m1)[2])
abline(a = coef(m2)[1], b = coef(m2)[2], col = "red")
abline(a = coef(m2)[1] + coef(m2)[3], b = coef(m2)[2], col = "blue")
legend("bottomleft", legend = c("Model 1", "Model 2 - Males", "Model 2 - Females"),

col = c("black", "red", "blue"), lty = 1)
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Dummy variables are always binary, but they can also be created based on categorical variables with more
than two categories. For instance, you might consider the geographic region of respondents. You can use the
region variable to this end. But this is a categorical variable with four values:

str(nes.dat$region)

## Factor w/ 4 levels "North Central",..: 2 2 2 2 2 2 2 2 2 2 ...

table(nes.dat$region)

##
## North Central Northeast South West
## 458 260 642 354

You can manually create four dummy variables, one for each region:
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nes.dat$region.northeast <- ifelse(nes.dat$region == "Northeast", 1, 0)
nes.dat$region.northcentral <- ifelse(nes.dat$region == "North Central", 1, 0)
nes.dat$region.south <- ifelse(nes.dat$region == "South", 1, 0)
nes.dat$region.west <- ifelse(nes.dat$region == "West", 1, 0)

m3 <- lm(clinton.therm ~
demrep.ctr + region.northeast + region.northcentral + region.south + region.west,

data = nes.dat)
summary(m3)

##
## Call:
## lm(formula = clinton.therm ~ demrep.ctr + region.northeast +
## region.northcentral + region.south + region.west, data = nes.dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -81.432 -18.375 1.269 18.284 77.165
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.1761 1.5249 36.840 < 2e-16 ***
## demrep.ctr -10.5403 0.5275 -19.980 < 2e-16 ***
## region.northeast -1.7201 2.3833 -0.722 0.47059
## region.northcentral -6.3650 2.0810 -3.059 0.00227 **
## region.south -0.1769 1.9653 -0.090 0.92830
## region.west NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 26.45 on 1311 degrees of freedom
## (398 observations deleted due to missingness)
## Multiple R-squared: 0.2428, Adjusted R-squared: 0.2405
## F-statistic: 105.1 on 4 and 1311 DF, p-value: < 2.2e-16

3. Why does your regression output not contain estimates for the Western United States?

You can again plot this output:

with(nes.dat, plot(x = jitter(demrep.ctr), y = clinton.therm, type = "p",
xlab = "Party ID (Democratic -> Republican)",
ylab = "Clinton thermometer"))

abline(v = 0, col = "gray")
abline(a = coef(m3)[1] + coef(m3)[3], b = coef(m3)[2], col = "blue", lwd = 2)
abline(a = coef(m3)[1] + coef(m3)[4], b = coef(m3)[2], col = "brown", lwd = 2)
abline(a = coef(m3)[1] + coef(m3)[5], b = coef(m3)[2], col = "red", lwd = 2)
abline(a = coef(m3)[1], b = coef(m3)[2], col = "green", lwd = 2)
legend("bottomleft", legend = c("Northeast", "North Central", "South", "West"),

col = c("blue", "brown", "red", "green"), lty = 1, lwd = 2)
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Note the overlap of the lines for South and West.

Alternatively, rather than creating individual dummy variables by hand, you can use the factor() function
within the regression equation to let R do the work:

m3b <- lm(clinton.therm ~
demrep.ctr + factor(region),

data = nes.dat)
summary(m3b)

##
## Call:
## lm(formula = clinton.therm ~ demrep.ctr + factor(region), data = nes.dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -81.432 -18.375 1.269 18.284 77.165
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 49.8111 1.4308 34.814 < 2e-16 ***
## demrep.ctr -10.5403 0.5275 -19.980 < 2e-16 ***
## factor(region)Northeast 4.6449 2.3178 2.004 0.04528 *
## factor(region)South 6.1881 1.8796 3.292 0.00102 **
## factor(region)West 6.3650 2.0810 3.059 0.00227 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 26.45 on 1311 degrees of freedom
## (398 observations deleted due to missingness)
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## Multiple R-squared: 0.2428, Adjusted R-squared: 0.2405
## F-statistic: 105.1 on 4 and 1311 DF, p-value: < 2.2e-16

4. Which coefficient estimates changed compared to m3 and why?

Lastly, if you have a factor with many levels and would like to create dummy variables for your dataset, but
avoid doing this as many times as the variable has categories, you can use the code below to achieve this task.
This code does the same thing you did above using the ifelse() function by hand:

for(level in unique(nes.dat$region)){
nes.dat[paste("region", level, sep = "_")] <- ifelse(nes.dat$region == level, 1, 0)

}
summary(nes.dat)

## demrep clinton.therm dem.therm female
## Min. :1.000 Min. : 0.00 Min. : 0.00 Min. :0.0000
## 1st Qu.:3.000 1st Qu.: 30.00 1st Qu.: 40.00 1st Qu.:0.0000
## Median :4.000 Median : 60.00 Median : 60.00 Median :1.0000
## Mean :4.327 Mean : 52.81 Mean : 58.86 Mean :0.5519
## 3rd Qu.:5.000 3rd Qu.: 70.00 3rd Qu.: 70.00 3rd Qu.:1.0000
## Max. :7.000 Max. :100.00 Max. :100.00 Max. :1.0000
## NA's :385 NA's :29 NA's :27
## age educ income region
## Min. :18.00 Min. :1.000 Min. : 1.00 North Central:458
## 1st Qu.:34.00 1st Qu.:3.000 1st Qu.:11.00 Northeast :260
## Median :44.00 Median :4.000 Median :16.00 South :642
## Mean :47.54 Mean :4.105 Mean :15.03 West :354
## 3rd Qu.:61.00 3rd Qu.:6.000 3rd Qu.:20.00
## Max. :93.00 Max. :7.000 Max. :24.00
## NA's :2 NA's :3 NA's :150
## demrep.ctr region.northeast region.northcentral region.south
## Min. :-3.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:-1.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median : 0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean : 0.3273 Mean :0.1517 Mean :0.2672 Mean :0.3746
## 3rd Qu.: 1.0000 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. : 3.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :385
## region.west region_Northeast region_North Central region_South
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.2065 Mean :0.1517 Mean :0.2672 Mean :0.3746
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## region_West
## Min. :0.0000
## 1st Qu.:0.0000
## Median :0.0000
## Mean :0.2065
## 3rd Qu.:0.0000
## Max. :1.0000
##
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A simulation example

The above example uses real survey data, and you can adjudicate yourself how much of a difference the
inclusion of the dummy variables as control variables makes to your estimates. However, we can also simulate
data where the results from a model without and with the dummy variable differ dramatically. In this
example, I simulate a continuous variable x1, a binary (dummy) variable x2, and a variable y that is first
created from a DGP so that y = α+ β1x1 + β2x2 + ε. Next, I add 1 to the values of x1 for all observations
where x2 = 1.

set.seed(123)
n.obs <- 100
x1 <- runif(n = n.obs, min = -1, max = 1)
x2 <- rbinom(n = n.obs, size = 1, prob = 0.5)
e <- rnorm(n.obs, mean = 0, sd = 2)
a <- 0.2
b1 <- 2.5
b2 <- -7.5
y <- a + b1 * x1 + b2 * x2 + e
sim.dat <- data.frame(y, x1, x2)
sim.dat[sim.dat$x2 == 1, ]$x1 <- sim.dat[sim.dat$x2 == 1, ]$x1 + 1
sim.dat$color <- ifelse(sim.dat$x2 == 1, "blue", "red")

Now, I fit two models: Model 1 predicts y with x1, and Model 2 adds the (binary) x2 as a control variable.

m1 <- lm(y ~ x1, data = sim.dat)
m2 <- lm(y ~ x1 + x2, data = sim.dat)
library(texreg)
screenreg(list(m1, m2))

##
## ===================================
## Model 1 Model 2
## -----------------------------------
## (Intercept) -2.82 *** 0.17
## (0.56) (0.28)
## x1 -1.91 ** 2.56 ***
## (0.65) (0.35)
## x2 -10.44 ***
## (0.49)
## -----------------------------------
## R^2 0.08 0.84
## Adj. R^2 0.07 0.84
## Num. obs. 100 100
## ===================================
## *** p < 0.001, ** p < 0.01, * p < 0.05

5. How do your conclusions about the relationship between x1 and y from the results above differ between
Model 1 and 2?

If you visualize the two models and their predictions, the difference becomes pretty clear:
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with(sim.dat, plot(x = x1, y = y, col = color))
abline(a = coef(m1)[1], b = coef(m1)[2])
abline(a = coef(m2)[1], b = coef(m2)[2], col = "red")
abline(a = coef(m2)[1] + coef(m2)[3], b = coef(m2)[2], col = "blue")
legend("bottomleft", legend = c("Model 1", "Model 2: x2 = 0", "Model 2: x2 = 1"),

col = c("black", "red", "blue"), lty = 1)
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We will work with dummy variables again on Day 11, and you will encounter them in your midterm exam
(based on the treatment in this tutorial.)

Dealing with unusual and influential data points

The main part of Day 9’s class is dedicated to dealing with unusual and influential data points. You already
encountered the role of unusual and influential data points in the in-class exercise 2.1 on Day 2. The remainder
of this tutorial follows closely chapter 11 in AR; please refer to that reading for explanations of the concepts
used below.

Notation and definitions

As you read in the introduction to chapter 11 in AR, problems with unusual and influential data can often
be dealt with long before you fit a statistical model - through examining data, building careful theoretical
models, and transforming data where necessary. If they do occur, though, unusual data points are

“problematic in linear models fit by least squares because they can unduly influence the results of
the anlaysis and because their presence may be a signal that the model fails to capture important
characteristics of the data.” (AR, p. 241)
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Unsual data points are also referred to as outliers. Outliers are“conditionally unusual [data points] given the
value of the explanatory variable.” (AR, p. 241). This means that you should consider residuals when you
think about outliers. Residuals are defined as

εi = yi − ŷ

Because residuals do not have equal variance, they cannot be directly compared when your goal is to assess
how unusual individual observations are. For this reason, we often use studentized residuals to express the
“unusualness” of data points on a comparable scale (see more in AR, p. 246-247):

εT i = εi

σ̂−i

√
1− hi

Unusual data points alone, however, are not necessarily a reason for concern when you are interested in using
OLS to make inferences. Concern is most warranted from a combination of “unusualness” and leverage on
your parameter estimates. In AR’s words:

Influence on coefficients = Leverage×Discrepancy

This symbolic equation guides the remainder of this tutorial.

Example data: crime rates in the United States

As example data, we use the crime dataset that appears in Statistical Methods for Social Sciences, Third
Edition by Alan Agresti and Barbara Finlay (Prentice Hall, 1997), and that is provided by UCLA’s Institute
for Digital Research and Education. The dataset has 51 rows (each row is one state) and 9 variables. The
variables are:

Variable Description
sid State ID
state State name
crime Violent crimes per 100,000 people
murder Murders per 1,000,000 people
pctmetro Percent of the population living in metropolitan areas
pctwhite Percent of the population that is white
pcths Percent of population with a high school education or above
poverty Percent of population living under poverty line
single Percent of population that are single parents

First, we estimate a regression model, predicting the crime rate with the poverty rate and the percent of
population with a high school education (or above). After fitting the model, we can create a scatterplot of
fitted values and residuals to check any conditionally unusual observations.

library(foreign)
crime.dat <- read.dta("http://www.ats.ucla.edu/stat/data/crime.dta")
m1 <- lm(crime ~ poverty + pcths, data = crime.dat)
plot(x = fitted.values(m1), y = resid(m1), type = "n")
text(x = fitted.values(m1), y = resid(m1), labels = names(fitted.values(m1)))
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R also offers a built-in residual plot that labels the most unusual points (with the row number of that
observation). Otherwise, this plot is identical to the one you just created “by hand”. See ?plot.lm for more
information.

plot(m1, which = c(1))
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6. What do you conclude from this residual plot about any of the regression assumptions you’ve encountered
in Days 6 and 8?

It looks like observations 20, 49, and 51 are somewhat unusual. Let’s look at these cases in the data by
calling these rows individually - remember, you can access individual rows of a dataframe by specifying their
numbers before the comma in the hard brackets, and you can access individual commas by doing the same
after the comma.

crime.dat[c(20, 49, 51), ]

## sid state crime murder pctmetro pctwhite pcths poverty single
## 20 20 md 998 12.7 92.8 68.9 78.4 9.7 12.0
## 49 49 wv 208 6.9 41.8 96.3 66.0 22.2 9.4
## 51 51 dc 2922 78.5 100.0 31.8 73.1 26.4 22.1

Outliers

We can calculate studentized residuals (see above) and add them as a new variable to our dataset. Then, I
use the arrange() function from the “dplyr” package to conveniently sort the dataset by the absolute value
of the studentized residuals. Studentized residuals can be positive or negative, so sorting them in ascending
descending order won’t do what I want here. The arrange() function can be applied to any data frame. Its
first argument is the dataframe to which you want to apply it. The second argument takes the variable by
which you want to sort the data. Here, I use two nested commands. First, I use abs(m1.studentized.resid)
rather than only the variable name m1.studentized.resid because I’d like to sort by the absolute values of
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the variable. Next, I nest this term in desc(). This command stands for “sort in descending order.” Lastly,
I use again row indexing to show me only the first 10 rows of the sorted dataframe.

crime.dat$m1.studentized.resid <- rstudent(m1)
library(dplyr)
arrange(crime.dat, desc(abs(m1.studentized.resid)))[1:10, ]

## sid state crime murder pctmetro pctwhite pcths poverty single
## 1 51 dc 2922 78.5 100.0 31.8 73.1 26.4 22.1
## 2 49 wv 208 6.9 41.8 96.3 66.0 22.2 9.4
## 3 25 ms 434 13.5 30.7 63.3 64.3 24.7 14.7
## 4 20 md 998 12.7 92.8 68.9 78.4 9.7 12.0
## 5 26 mt 178 3.0 24.0 92.6 81.0 14.9 10.8
## 6 33 nv 875 10.4 84.8 86.7 78.8 9.8 12.4
## 7 41 sd 208 3.4 32.6 90.2 77.1 14.2 9.4
## 8 50 wy 286 3.4 29.7 95.9 83.0 13.3 10.8
## 9 14 il 960 11.4 84.0 81.0 76.2 13.6 11.5
## 10 9 fl 1206 8.9 93.0 83.5 74.4 17.8 10.6
## m1.studentized.resid
## 1 6.339983
## 2 -2.091204
## 3 -1.853594
## 4 1.801713
## 5 -1.615579
## 6 1.397613
## 7 -1.124149
## 8 -1.121716
## 9 1.050410
## 10 1.048094

7. What would you need to do to show you the first 5 rows of the dataframe sorted by the crime rate?

I can also use the outlierTest() function from the “car” package to obtain “statistically significant” outliers.
This test is based on the Bonferroni p-value as it is explained in section 11.3.1 of AR. You can find out more
about this function via ?outlierTest. Don’t forget to load the “car” package before using this function.

library(car)
outlierTest(m1, cutoff = 0.1)

## rstudent unadjusted p-value Bonferonni p
## 51 6.339983 8.2151e-08 4.1897e-06

With tests like these, please keep in mind the warning in section 11.5 of AR: the numerical cutoffs used
for these tests are not a be-all end-all criterion for how you should deal with outliers. Rather, a careful
combination of numerical and visual tests as well as inspection of the cases should guide your practice.

Leverage

To diagnose leverage on OLS coefficients, AR recommends to investigate hat values (section 11.2). You
can easily access them using the hatvalues() function (no R package needed) and again add them to your
dataset and sort the dataset to see which observations have the highest hat values.
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crime.dat$m1.hatvalues <- hatvalues(m1)
arrange(crime.dat, desc(m1.hatvalues))[1:10, ]

## sid state crime murder pctmetro pctwhite pcths poverty single
## 1 51 dc 2922 78.5 100.0 31.8 73.1 26.4 22.1
## 2 18 la 1062 20.3 75.0 66.7 68.3 26.4 14.9
## 3 25 ms 434 13.5 30.7 63.3 64.3 24.7 14.7
## 4 17 ky 463 6.6 48.5 91.8 64.6 20.4 10.6
## 5 39 ri 402 3.9 93.6 92.6 72.0 11.2 10.8
## 6 49 wv 208 6.9 41.8 96.3 66.0 22.2 9.4
## 7 1 ak 761 9.0 41.8 75.2 86.6 9.1 14.3
## 8 2 al 780 11.6 67.4 73.5 66.9 17.4 11.5
## 9 3 ar 593 10.2 44.7 82.9 66.3 20.0 10.7
## 10 45 va 372 8.3 77.5 77.1 75.2 9.7 10.3
## m1.studentized.resid m1.hatvalues
## 1 6.3399832 0.24915431
## 2 -0.6160271 0.17360933
## 3 -1.8535942 0.13194366
## 4 -0.8919457 0.10793022
## 5 0.2513072 0.09867824
## 6 -2.0912037 0.09265962
## 7 0.7655789 0.09138438
## 8 0.4221204 0.08900606
## 9 -0.5448110 0.08279538
## 10 0.2582032 0.07752945

Influence

In section 11.4 of AR, you encounter Cook’s D(istance) statistic as a measure of influence. Again, you can
use the appropriately named function in R to obtain these values and sort the dataset by them.

crime.dat$m1.cooksD <- cooks.distance(m1)
arrange(crime.dat, desc(m1.cooksD))[1:10, ]

## sid state crime murder pctmetro pctwhite pcths poverty single
## 1 51 dc 2922 78.5 100.0 31.8 73.1 26.4 22.1
## 2 25 ms 434 13.5 30.7 63.3 64.3 24.7 14.7
## 3 49 wv 208 6.9 41.8 96.3 66.0 22.2 9.4
## 4 26 mt 178 3.0 24.0 92.6 81.0 14.9 10.8
## 5 20 md 998 12.7 92.8 68.9 78.4 9.7 12.0
## 6 17 ky 463 6.6 48.5 91.8 64.6 20.4 10.6
## 7 50 wy 286 3.4 29.7 95.9 83.0 13.3 10.8
## 8 33 nv 875 10.4 84.8 86.7 78.8 9.8 12.4
## 9 18 la 1062 20.3 75.0 66.7 68.3 26.4 14.9
## 10 1 ak 761 9.0 41.8 75.2 86.6 9.1 14.3
## m1.studentized.resid m1.hatvalues m1.cooksD
## 1 6.3399832 0.24915431 2.44748707
## 2 -1.8535942 0.13194366 0.16567269
## 3 -2.0912037 0.09265962 0.13909032
## 4 -1.6155787 0.06112029 0.05480014
## 5 1.8017133 0.04489217 0.04858550
## 6 -0.8919457 0.10793022 0.03222207
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## 7 -1.1217157 0.07044526 0.03161483
## 8 1.3976125 0.04162281 0.02772722
## 9 -0.6160271 0.17360933 0.02692259
## 10 0.7655789 0.09138438 0.01982036

The “car” package also contains the influencePlot() function, which you can use to plot leverage, discrepancy,
and influence all in one plot. The y-axis (studentized residuals) indicates how unusual a data point is, the
x-axis (hat-values) shows its leverage on the coefficients, and the size of the bubbles in the plot indicates the
Cook’s D value of each data point. See Figure 11.5 in AR and ?influencePlot for reference.

influencePlot(m1)
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## StudRes Hat CookD
## 51 6.339983 0.2491543 1.564445

8. What do you conclude from this influence plot?

An alternative but related measure of influence are dfbetas (see AR section 11.4). You can add dfbetas to
your data frame and then create a scatterplot of them, using state IDs as labels. Then, you will easily see
which observation(s) exercise high influence on both coefficients.

crime.dat$m1.dfbeta.poverty <- dfbetas(m1)[, c("poverty")]
crime.dat$m1.dfbeta.pcths <- dfbetas(m1)[, c("pcths")]
plot(x = crime.dat$m1.dfbeta.poverty,

y = crime.dat$m1.dfbeta.pcths,
type = "n")

text(x = crime.dat$m1.dfbeta.poverty,
y = crime.dat$m1.dfbeta.pcths,
labels = crime.dat$state)
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9. What is the meaning of the scale of the x- and y-axes in the plot above?

Dropping observations

In section 11.6 of AR, you learn about the joint influence of data points on regression coefficients. You can see
what is meant by this by comparing regression results from two models. Above, it seemed as if the District of
Columbia exerts an undue influence on your regression results. So let’s estimate our model from above, but
drop observation 51 (DC) from the data.

m2 <- lm(crime ~ poverty + pcths, data = crime.dat[-c(51), ])
library(texreg)
screenreg(list(m1, m2))

##
## ====================================
## Model 1 Model 2
## ------------------------------------
## (Intercept) -2023.27 345.85
## (1288.79) (1026.64)
## poverty 68.74 *** 23.93
## (17.47) (14.76)
## pcths 21.72 -1.50
## (14.32) (11.24)
## ------------------------------------
## R^2 0.29 0.14
## Adj. R^2 0.26 0.10
## Num. obs. 51 50
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## ====================================
## *** p < 0.001, ** p < 0.01, * p < 0.05

10. Does dropping DC change your conclusions from this regression model?

You can also use added-variable plots to see whether observations might exert leverage on the respective
coefficients. This might be useful if you don’t want to drop observations based on previous diagnostics and
explore your data before continuing. The “car” package provides the avPlot() function, and these plots are
explained in more detail in section 11.6.1 in AR.

avPlots(m1)
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Added−Variable Plots

At the end of this tutorial, please consider the advice in section 11.7 of AR:

“Outlying and influential data should not be ignored, but they also should not simply be deleted
without investigation.”

Outlying and influential data are often a good starting point for further analysis that may reveal new and
important insights.

11. Now try on your own. Download a dataset of social indicators provided by the United Nations.
The dataset is available on John Fox’s webpage at http://socserv.socsci.mcmaster.ca/jfox/Books/
Applied-Regression-3E/datasets/index.html under the name “UnitedNations.txt”. Read it into R using
the read.table() function and the URL of the dataset. Then, estimate a regression model predicting
infant mortality, with a set of at least 2 predictors you think are theoretically related to infant mortality.
Check whether outliers influence your inferences. If yes, how do you propose to deal with these outliers?
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