
Tutorial 8: Multiple Regression
Johannes Karreth
RPOS 517, Day 8

This tutorial shows you:

• how to estimate a regression model with multiple predictors
• how to present regression results graphically
• how to calculate standardized regression coefficients

Note on copying & pasting code from the PDF version of this tutorial: Please note that you may
run into trouble if you copy & paste code from the PDF version of this tutorial into your R script. When the
PDF is created, some characters (for instance, quotation marks or indentations) are converted into non-text
characters that R won’t recognize. To use code from this tutorial, please type it yourself into your R script or
you may copy & paste code from the source file for this tutorial which is posted on my website.

Note on R functions discussed in this tutorial: I don’t discuss many functions in detail here and
therefore I encourage you to look up the help files for these functions or search the web for them before you use
them. This will help you understand the functions better. Each of these functions is well-documented either
in its help file (which you can access in R by typing ?ifelse, for instance) or on the web. The Companion to
Applied Regression (see our syllabus) also provides many detailed explanations.

As always, please note that this tutorial only accompanies the other materials for Day 8 and that you are
expected to have worked through the videos and reading for that day before tackling this tutorial.

Basic setup

This tutorial builds on the readings and videos you worked through for Day 8. These materials introduce a
new form of the familiar regression equation to you. On Days 6 and 7, you worked with one outcome variable
y and one explanatory variable x. The parameters you recovered via OLS were the intercept, α, and the
slope coefficient β. For today, you encounter a second explanatory variable x2, next to x1.

This also increases the number of slope coefficients to two: β1 is associated with x1, and β2 is associated with
x2:

yi = α+ β1x1 + β2x2 + ε

We can simulate the data-generating process for this y, mirroring the approach you saw in the tutorial for
Day 6:

set.seed(123)
n.obs <- 25
x1 <- rnorm(n = n.obs, mean = 5, sd = 2)
x2 <- runif(n = n.obs, min = -7, max = 7)
i <- c(1:n.obs)
e <- rnorm(n = n.obs, mean = 0, sd = 1)
a <- 2
b1<- 0.5
b2 <- -0.75
y <- a + b1 * x1 + b2 * x2 + e
sim.dat <- data.frame(y, x1, x2)

1

When estimating a linear model in statistical software, in our case R, the only change you have to make to
add the additional explanatory variable(s) to the formula for the model you estimate:

mod <- lm(y ~ x1 + x2, data = sim.dat)
summary(mod)

##
Call:
lm(formula = y ~ x1 + x2, data = sim.dat)
##
Residuals:
Min 1Q Median 3Q Max
-1.3996 -0.7212 -0.1522 0.4452 1.7291
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.7548 0.5700 3.078 0.00549 **
x1 0.5517 0.1084 5.088 4.26e-05 ***
x2 -0.7489 0.0518 -14.457 1.03e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.9898 on 22 degrees of freedom
Multiple R-squared: 0.9245, Adjusted R-squared: 0.9177
F-statistic: 134.7 on 2 and 22 DF, p-value: 4.53e-13

This lm object has some elements that you can use later on. You can view the structure of the model object
with the str() function:

str(mod)

List of 12
$ coefficients : Named num [1:3] 1.755 0.552 -0.749
..- attr(*, "names")= chr [1:3] "(Intercept)" "x1" "x2"
$ residuals : Named num [1:25] -0.72 0.298 -1.4 0.42 0.773 ...
..- attr(*, "names")= chr [1:25] "1" "2" "3" "4" ...
$ effects : Named num [1:25] -22.519 7.697 14.309 0.379 1.009 ...
..- attr(*, "names")= chr [1:25] "(Intercept)" "x1" "x2" "" ...
$ rank : int 3
$ fitted.values: Named num [1:25] 8.66 4.87 3.1 8.56 4.02 ...
..- attr(*, "names")= chr [1:25] "1" "2" "3" "4" ...
$ assign : int [1:3] 0 1 2
$ qr :List of 5
..$ qr : num [1:25, 1:3] -5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 ...
.. ..- attr(*, "dimnames")=List of 2
..$: chr [1:25] "1" "2" "3" "4" ...
..$: chr [1:3] "(Intercept)" "x1" "x2"
.. ..- attr(*, "assign")= int [1:3] 0 1 2
..$ qraux: num [1:3] 1.2 1.02 1.35
..$ pivot: int [1:3] 1 2 3
..$ tol : num 1e-07
..$ rank : int 3
..- attr(*, "class")= chr "qr"

2

$ df.residual : int 22
$ xlevels : Named list()
$ call : language lm(formula = y ~ x1 + x2, data = sim.dat)
$ terms :Classes 'terms', 'formula' length 3 y ~ x1 + x2
.. ..- attr(*, "variables")= language list(y, x1, x2)
.. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:3] "y" "x1" "x2"
..$: chr [1:2] "x1" "x2"
.. ..- attr(*, "term.labels")= chr [1:2] "x1" "x2"
.. ..- attr(*, "order")= int [1:2] 1 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(y, x1, x2)
.. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "numeric"
..- attr(*, "names")= chr [1:3] "y" "x1" "x2"
$ model :'data.frame': 25 obs. of 3 variables:
..$ y : num [1:25] 7.94 5.16 1.7 8.98 4.79 ...
..$ x1: num [1:25] 3.88 4.54 8.12 5.14 5.26 ...
..$ x2: num [1:25] -6.358 -0.809 4.185 -5.293 0.853 ...
..- attr(*, "terms")=Classes 'terms', 'formula' length 3 y ~ x1 + x2
..- attr(*, "variables")= language list(y, x1, x2)
..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:3] "y" "x1" "x2"
..$: chr [1:2] "x1" "x2"
..- attr(*, "term.labels")= chr [1:2] "x1" "x2"
..- attr(*, "order")= int [1:2] 1 1
..- attr(*, "intercept")= int 1
..- attr(*, "response")= int 1
..- attr(*, ".Environment")=<environment: R_GlobalEnv>
..- attr(*, "predvars")= language list(y, x1, x2)
..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "numeric"
..- attr(*, "names")= chr [1:3] "y" "x1" "x2"
- attr(*, "class")= chr "lm"

We can extract some of these quantities with commands that you’re already familiar with:

coef(mod)

(Intercept) x1 x2
1.7548443 0.5516712 -0.7488609

plot(x = fitted.values(mod), y = residuals(mod))

3

0 2 4 6 8

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

fitted.values(mod)

re
si

du
al

s(
m

od
)

Before you advance, a reminder: the assumptions we discussed on Day 6 are the same assumptions underling
the linear regression model with more than one predictor. These assumptions are:

• Linearity (A1)
• Constant error variance: V (ε) = σ2 (A2)
• Normality of the errors: ε N (0, 1) (A3)
• Independence of observations: εi and εj are independent (A4)
• None of the predictors x1, x2, etc. is a function of ε (A5)

Example data: Occupational prestige

We’ll now use some example data that you encountered in your AR reading. These data come from the “car”
package, so I first load the package, then create the object prestige.dat containing the dataset.

library(car)
prestige.dat <- data.frame(Prestige)
head(prestige.dat)

education income women prestige census type
gov.administrators 13.11 12351 11.16 68.8 1113 prof
general.managers 12.26 25879 4.02 69.1 1130 prof
accountants 12.77 9271 15.70 63.4 1171 prof
purchasing.officers 11.42 8865 9.11 56.8 1175 prof
chemists 14.62 8403 11.68 73.5 2111 prof
physicists 15.64 11030 5.13 77.6 2113 prof

4

summary(prestige.dat)

education income women prestige
Min. : 6.380 Min. : 611 Min. : 0.000 Min. :14.80
1st Qu.: 8.445 1st Qu.: 4106 1st Qu.: 3.592 1st Qu.:35.23
Median :10.540 Median : 5930 Median :13.600 Median :43.60
Mean :10.738 Mean : 6798 Mean :28.979 Mean :46.83
3rd Qu.:12.648 3rd Qu.: 8187 3rd Qu.:52.203 3rd Qu.:59.27
Max. :15.970 Max. :25879 Max. :97.510 Max. :87.20
census type
Min. :1113 bc :44
1st Qu.:3120 prof:31
Median :5135 wc :23
Mean :5402 NA's: 4
3rd Qu.:8312
Max. :9517

The dataset has 102 rows (each row is one occupation) and 6 variables. The variables are:

Variable Description
education Average education of occupational incumbents, years, in 1971.
income Average income of incumbents, dollars, in 1971.
women Percentage of incumbents who are women.
prestige Pineo-Porter prestige score for occupation, from a social survey conducted in the mid-1960s.
census Canadian Census occupational code.
type Type of occupation. A factor with levels: b(lue)c(ollar), prof(essional), and w(hite)c(ollar).

For this example, I’d like to investigate the correlates of the prestige score. I could first focus on the income
of each occupation and create a scatterplot of income and prestige.

with(prestige.dat, plot(x = income, y = prestige, main = ""))
income.mod <- lm(prestige ~ income, data = prestige.dat)
abline(income.mod)

5

0 5000 10000 15000 20000 25000

20
40

60
80

income

pr
es

tig
e

I could also check the relationship between education and prestige:

with(prestige.dat, plot(x = education, y = prestige, main = ""))
education.mod <- lm(prestige ~ education, data = prestige.dat)
abline(education.mod)

6 8 10 12 14 16

20
40

60
80

education

pr
es

tig
e

6

Regression with two predictors

Considering that both variables are clearly related to occupational prestige, you might decide that both should
be part of a multiple regression model. You can fit this model by adding both variables to the equation:

mod <- lm(prestige ~ income + education, data = prestige.dat)
summary(mod)

##
Call:
lm(formula = prestige ~ income + education, data = prestige.dat)
##
Residuals:
Min 1Q Median 3Q Max
-19.4040 -5.3308 0.0154 4.9803 17.6889
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.8477787 3.2189771 -2.127 0.0359 *
income 0.0013612 0.0002242 6.071 2.36e-08 ***
education 4.1374444 0.3489120 11.858 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 7.81 on 99 degrees of freedom
Multiple R-squared: 0.798, Adjusted R-squared: 0.7939
F-statistic: 195.6 on 2 and 99 DF, p-value: < 2.2e-16

You can already see some important quantities from the summary of the lm object. The intercept and the two
slope coefficients are interpreted as you learned in today’s video and the AR reading. To quote Fox (p. 89):

The slope coefficients for the explanatory variables in multiple regression are partial coefficients. . .
That is, each slope in multiple regression represents the “effect” on the response variable of a
one-unit increment in the corresponding explanatory variable holding constant the value of the
other explanatory variable.

In our example, this means that an occupation that requires one additional year of average education
receives a 4.13 higher rating on the occupational prestige score, regardless of the average income of
that occupation. The qualifier at the end may sound trivial, but it will become important later on. In this
setup, you are specifying a model of the DGP that assumes that the effect of one explanatory variable on the
response variable is completely independent of the value of other explanatory variables.

You can now use the handy set of functions in the “texreg” package to produce a publication-ready regression
table. If you haven’t done so, install the package. First, you may wan to print the table to your screen:

library(texreg)
screenreg(mod)

##
=======================
Model 1

7

(Intercept) -6.85 *
(3.22)
income 0.00 ***
(0.00)
education 4.14 ***
(0.35)

R^2 0.80
Adj. R^2 0.79
Num. obs. 102
=======================
*** p < 0.001, ** p < 0.01, * p < 0.05

This table can be improved. You can find out all available options by checking the help page using the
?screenreg command. I make some modifications below that I recommend for your work with regression
tables as well:

• print only two digits
• use only one marker (usually an asterisk) to show whether a coefficient’s standard error lets you reject
H0: β = 0 at the 0.05 level

• use proper variable names that also show up in your main text
• reorder coefficients in a sensible order

screenreg(list(mod),
stars = 0.05,
digits = 2,
custom.model.names = c(""),
custom.coef.names = c("Intercept", "Income", "Education"),
reorder.coef = c(2, 3, 1))

##
===================
##

Income 0.00 *
(0.00)
Education 4.14 *
(0.35)
Intercept -6.85 *
(3.22)

R^2 0.80
Adj. R^2 0.79
Num. obs. 102
===================
* p < 0.05

1. Given what you know about p-values and z-scores, can you think of a shortcut (a calculation in
your head) that would allow you to quickly figure out whether a coefficient estimate is “statistically
significant”, based on a point estimate of that coefficient and its standard error?

I can now use the same options for the htmlreg() and texreg() functions to produce tables for Word or for
the PDF file produced by RMarkdown.

8

Table 2: Analysis of occupational prestige

Income 0.00∗

(0.00)
Education 4.14∗

(0.35)
Intercept −6.85∗

(3.22)
R2 0.80
Adj. R2 0.79
Num. obs. 102
∗p < 0.05

To create a table for a Word document that you can insert into a manuscript, use htmlreg() and save the
table to your working directory:

htmlreg(list(mod),
file = "~/Documents/Uni/Teaching/POS 517/Tutorials/Day 8 - Multiple regression/tab_m1.doc",
stars = 0.05,
digits = 2,
custom.model.names = c(""),
custom.coef.names = c("Intercept", "Income", "Education"),
reorder.coef = c(2, 3, 1),
caption = "Analysis of occupational prestige",
caption.above = TRUE)

If you would like to add a table to the PDF file you’re producing with RMarkdown, just replace htmlreg()
with texreg() and be sure to set the options of your R code chunk to results = "asis". Note that the
texreg() function will not produce any output in a HTML or Word document that you are knitting from
Rstudio. Therefore, use texreg() only if you are knitting a PDF document, or if you are working in LaTeX.

texreg(list(mod),
stars = 0.05,
digits = 2,
custom.model.names = c(""),
custom.coef.names = c("Intercept", "Income", "Education"),
reorder.coef = c(2, 3, 1),
caption = "Analysis of occupational prestige",
caption.above = TRUE)

However, one problem you may notice with this output is that it returns a coefficient estimate for income
that is 0.00 (but marked as “statistically significant”). The actual coefficient estimate we recover from the
model object is 0.0013612:

coef(mod)

(Intercept) income education
-6.847778720 0.001361166 4.137444384

Since a “significant” coefficient of 0.00 is an oxymoron, you should either increase the number of digits shown
in the regression table, or consider rescaling the income variable.

9

2. Investigate the income variable and decide whether you should do anything with it before including it
in your regression model.

Graphical output

While you can summarize a regression model with the table we just produced, it is often beneficial to use
graphical methods to present regression results. We’ll devote more time to this later on in the seminar, but
here are four papers you can consult that provide some detailed explanations for why regression results (and
other statistical quantities) are often best presented graphically. The papers also make useful recommendations
on how to present these quantities.

• Epstein, Lee, Andrew D. Martin, and Matthew M. Schneider (2006). “On the Effective Communication
of the Results of Empirical Studies, Part I”. Vanderbilt Law Review 59: 1811-1871.

• Epstein, Lee, Andrew D. Martin, and Christina L. Boyd (2007). “On the Effective Communication of
the Results of Empirical Studies, Part II”. Vanderbilt Law Review 60: 801-846.

• Kastellec, Jonathan P. and Leoni, Eduardo L (2007). “Using Graphs Instead of Tables in Political
Science”. Perspectives on Politics 5 (4): 755-771.

• Jacoby, William G. “The Dot Plot: A Graphical Display for Labeled Quantitative Values”. The Political
Methodologist 14 (1): 6-14.

The plotreg() function

R offers some easy functions to create dot plots for regression coefficients. If you are already using the
“texreg” package to create tables, its plotreg() function is a very easy-to-use extension. It works just like
the screenreg() function and the other ones you just encountered, but an acceptable plot requires even
fewer options to be set:

plotreg(list(mod),
file = "/Users/johanneskarreth/Documents/Uni/Teaching/POS 517/Tutorials/Day 8 -

Multiple regression/plot_m1.pdf",
custom.coef.names = c("Intercept", "Income", "Education"),
custom.model.names = c(""),
reorder.coef = c(2, 3, 1),
lwd.vbars = 0)

Bars denote CIs.

Income

Education

Intercept

−10 −5 0 5

10

http://epstein.wustl.edu/research/communicating1.pdf
http://epstein.wustl.edu/research/communicating1.pdf
http://epstein.wustl.edu/research/communicating2.pdf
http://epstein.wustl.edu/research/communicating2.pdf
http://www.princeton.edu/~jkastell/graphs.pdf
http://www.princeton.edu/~jkastell/graphs.pdf
http://polisci.msu.edu/jacoby/research/dotplots/tpm/Jacoby,%20Dotplots,%20TPM%20Draft.pdf

Again, have a look at the help page via ?plotreg to learn more about how this plot can be customized. If
you want to set the size of the figure to avoid empty white space, you can print the figure into your working
directory as usual using the pdf() (or png() etc.) functions. See Quick-R: Creating and Saving Graphs for
more information.

pdf(file = "~/Documents/Uni/Teaching/POS 517/Tutorials/Day 8 - Multiple regression/plot_m1.pdf",
width = 6, height = 3.5)

plotreg(list(mod),
custom.coef.names = c("Intercept", "Income", "Education"),
custom.model.names = c(""),
reorder.coef = c(2, 3, 1),
lwd.vbars = 0)

dev.off()

pdf
2

Standardized regression coefficients

You already noticed one problem with the regression output that also carries over into the gregression
coefficient dot plot: the estimate of the income coefficient is quite small compared to the education coefficient
and the intercept. One potential benefit of multiple regression is that it allows to compare the relationships
between explanatory variables and the outcome variable. In our current example, this requires some additional
thinking because income and education are on different scales (dollars and years, respectively).

One solution that you encounter in section 5.2.4 of AR is to use standardized regression coefficients. The
idea behind standardized coefficients is that they estimate relationships between variables that are all on a
comparable scale. You already know one way to standardize variables (calcualating the z-score), and here we
use a similar strategy. This strategy will yield the same results as the sequence you read about in section
5.2.4 of AR, but it standardizes variables, not coefficients:

• first, we rescale each variable so that its mean is 0 (we subtract the mean of the variable from each
observation’s value),

• second, we divide the rescaled variable by the standard deviation of the variable.

In R, this is easy to do by hand:

prestige.dat$prestige.std <- (prestige.dat$prestige -
mean(prestige.dat$prestige, na.rm = TRUE)) /

sd(prestige.dat$prestige, na.rm = TRUE)

prestige.dat$income.std <- (prestige.dat$income -
mean(prestige.dat$income, na.rm = TRUE)) /

sd(prestige.dat$income, na.rm = TRUE)

prestige.dat$education.std <- (prestige.dat$education -
mean(prestige.dat$education, na.rm = TRUE)) /

sd(prestige.dat$education, na.rm = TRUE)

summary(prestige.dat)

11

http://www.statmethods.net/graphs/creating.html

education income women prestige
Min. : 6.380 Min. : 611 Min. : 0.000 Min. :14.80
1st Qu.: 8.445 1st Qu.: 4106 1st Qu.: 3.592 1st Qu.:35.23
Median :10.540 Median : 5930 Median :13.600 Median :43.60
Mean :10.738 Mean : 6798 Mean :28.979 Mean :46.83
3rd Qu.:12.648 3rd Qu.: 8187 3rd Qu.:52.203 3rd Qu.:59.27
Max. :15.970 Max. :25879 Max. :97.510 Max. :87.20
census type prestige.std income.std
Min. :1113 bc :44 Min. :-1.8619 Min. :-1.4571
1st Qu.:3120 prof:31 1st Qu.:-0.6747 1st Qu.:-0.6340
Median :5135 wc :23 Median :-0.1879 Median :-0.2043
Mean :5402 NA's: 4 Mean : 0.0000 Mean : 0.0000
3rd Qu.:8312 3rd Qu.: 0.7232 3rd Qu.: 0.3272
Max. :9517 Max. : 2.3463 Max. : 4.4940
education.std
Min. :-1.59726
1st Qu.:-0.84042
Median :-0.07258
Mean : 0.00000
3rd Qu.: 0.69983
Max. : 1.91756

3. Fox warns you in AR (on pp. 95-96) that standardizing variables (and coefficients) is not useful if
a variable is not normally distributed. Is any of the variables we just standardized not normally
distributed? Is this reflected in the summary of the standardized variable?

We can now re-estimate our model using the rescaled variables, and have a look at the results:

mod.std <- lm(prestige.std ~ income.std + education.std, data = prestige.dat)
screenreg(list(mod.std),

stars = 0.05,
digits = 2,
custom.model.names = c(""),
custom.coef.names = c("Intercept", "Income", "Education"),
reorder.coef = c(2, 3, 1))

##
===================
##

Income 0.34 *
(0.06)
Education 0.66 *
(0.06)
Intercept -0.00
(0.04)

R^2 0.80
Adj. R^2 0.79
Num. obs. 102
===================
* p < 0.05

12

plotreg(list(mod.std),
custom.coef.names = c("Intercept", "Income", "Education"),
custom.model.names = c(""),
reorder.coef = c(2, 3, 1),
lwd.vbars = 0)

Bars denote CIs.

Income

Education

Intercept

0.0 0.2 0.4 0.6

These results are now somewhat more helpful if we want to compare relationships between different explanatory
variables and the response variable.

4. Is there a reason that the intercept is now estimated to be 0?

5. Did any other quantities of the model change compared to the initial model (mod) you fit? If yes, why?
If not, why?

Note: R has a built-in function to standardize variables, scale(), so you do not need to perform the operation
above each time you want to us standardized variables. The following code exploits this function:

prestige.dat$prestige.std <- scale(prestige.dat$prestige)
prestige.dat$income.std <- scale(prestige.dat$income)
prestige.dat$education.std <- scale(prestige.dat$education)

scale() also allows you to only “center” a variable (set its mean to 0) or to only divide it by its standard
deviation. Have a look at ?scale for more information.
Lastly, you could use the scale() function directly in the model formula:

mod.std <- lm(scale(prestige) ~ scale(income) + scale(education), data = prestige.dat)

Next steps

You have now learned the mechanics of fitting a linear regression model with multiple predictors in R. Adding
additional predictors is trivial. Next, you should examine whether the assumptions of the linear regression
model are met in your application. Multiple regression also brings some additional challenges that we will
explore in the next few days, including collinearity, outliers, and heteroskedasticity. Lastly, you should always
be aware of two issues. While you can fit linear regression models on almost any kind of data, the linear
regression model often does not appropriately represent the underlying data generating process, and may
therefore return biased and/or inefficient estimates. And, regression coefficients cannot be interpreted as
causal effects unless your research design is set up as to clearly test for a causal relationship.

13

	Basic setup
	Example data: Occupational prestige
	Regression with two predictors
	Graphical output
	The plotreg() function

	Standardized regression coefficients
	Next steps

