Tutorial 6: Bivariate regression
Johannes Karreth

RPOS 517, Week 6

This tutorial shows you:

how to fit a bivariate regression model

e how to create a bivariate scatterplot with a line of best fit

o how to create a residual plot

e how to present the output from a regression model in a table

Note on copying & pasting code from the PDF version of this tutorial: Please note that you may
run into trouble if you copy & paste code from the PDF version of this tutorial into your R script. When the
PDF is created, some characters (for instance, quotation marks or indentations) are converted into non-text
characters that R won’t recognize. To use code from this tutorial, please type it yourself into your R script or
you may copy & paste code from the source file for this tutorial which is posted on my website.

Regression: Basic concepts

So far, you have examined relationships between continuous and binary variables (differences of means &
differences of proportions). In your textbook sections for today (Applied Regression Analysis sections 5.1 and
5.2, henceforth AR), you first encounter regression analysis as a technique to express a linear relationship
between two continuous variables. We typically refer to these variables as outcome variable y and
explanatory or predictor variable x. Linear regression allows you to express the relationship between x
and y through coefficients in the following equation:

yi =a+ Br; +e¢

« is the so-called intercept; [ is the slope coefficient for your explanatory variable x; € is the residual.
Other ways to express these are [y for the intercept and S for the slope coefficient, or to use Roman instead
of Greek letters. The index i stands for the individual observations of your data. Also see the summary in
AR, top of p. 82.

The following picture illustrates these concepts:
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Basic workflow

As you just read, linear regression is a useful tool to identify a linear relationship between two continuous
variables. To do this, we typically perform the following steps. We’ll expand these steps in the next few
weeks and supply the logic behind them, but the underlying routine remains the same.

1. Based on your research question and theory, operationalize your outcome and explanatory variables.

2. If your outcome variable is continuous, linear regression may be an appropriate tool to examine data
and evaluate your hypothesis.

3. Specify your linear regression equation in the form y; = a + fx; + ¢

o [ will express the relationship between your explanatory variable x and your outcome y.

e As you will see later today, 8 can be interpreted as: “a one-unit change in x results in a S-unit
change in y.”

e What does your hypothesis predict for 37 Do you expect 5 be positive or negative? How large do
you expect 3 to be?

4. Create a scatterplot of your explanatory and predictor variables.

5. Fit a linear regression model by identifying the straight line that best fits the above scatterplot.



6. Check how well this model fits your data and whether it violates any of the regression assumptions.
Note: not all of these assumptions can be directly checked by inspecting your data.

o Linearity (A1)

o Constant error variance (A2)

o Normality of the errors (A3)

« Independence of observations (A4)

o No correlation between x and € (A5)

7. Interpret 8 in a meaningful way and evaluate how it relates to your hypothesized value of 5.

The remainder of this tutorial explains these concepts with some example data about various performance
indicators of baseball teams.

Batter up

The movie “Moneyball” focuses on the “quest for the secret of success in baseball”. It follows a low-budget
team, the Oakland Athletics, who believed that underused statistics, such as a player’s ability to get on base,
better predict the ability to score runs than typical statistics like home runs, RBIs (runs batted in), and
batting average. Obtaining players who excelled in these underused statistics turned out to be much more
affordable for the team.

In this tutorial we’ll be looking at data from all 30 Major League Baseball teams and examining the linear
relationship between runs scored in a season and a number of other player statistics. Our aim will be to
summarize these relationships both graphically and numerically in order to find which variable, if any, helps
us best predict a team’s runs scored in a season.

The data

Let’s load up the data for the 2011 season.

mlbll <- read.csv("http://www.jkarreth.net/files/mlbl1l.csv")

head(mlb11)

## team runs at_bats hits homeruns bat_avg strikeouts
## 1 Texas Rangers 855 5659 1599 210 0.283 930
## 2 Boston Red Sox 875 5710 1600 203 0.280 1108
## 3 Detroit Tigers 787 5563 1540 169 0.277 1143
## 4 Kansas City Royals 730 5672 1560 129 0.275 1006
## 5 St. Louis Cardinals 762 5532 1513 162 0.273 978
## 6 New York Mets 718 5600 1477 108 0.264 1085
## stolen_bases wins new_onbase new_slug new_obs

## 1 143 96 0.340 0.460 0.800

## 2 102 90 0.349 0.461 0.810

## 3 49 95 0.340 0.434 0.773

## 4 153 71 0.329 0.415 0.744

## 5 57 90 0.341 0.425 0.766

## 6 130 77 0.335 0.391 0.725

In addition to runs scored, there are seven traditionally used variables in the data set: at-bats, hits, home
runs, batting average, strikeouts, stolen bases, and wins. There are also three newer variables: on-base
percentage, slugging percentage, and on-base plus slugging. For the first portion of the analysis we’ll consider
the seven traditional variables. At the end of the tutorial, you’ll work with the newer variables on your own.



1. What type of plot would you use to display the relationship between runs and one of the other numerical
variables? Plot this relationship using the variable at_bats as the predictor. Does the relationship
look linear? If you knew a team’s at_bats, would you be comfortable using a linear model to predict
the number of runs?

If the relationship looks linear, we can quantify the strength of the relationship with the correlation coefficient
(see AR, bottom of p. 85, equation 5.4).

cor(mlbl1$runs, mlbli$at_bats)

## [1] 0.610627

Sum of squared residuals

Think back to the way that we described the distribution of a single variable. Recall that we discussed
characteristics such as center, spread, and shape. It’s also useful to be able to describe the relationship of
two numerical variables, such as runs and at_bats above.

2. Looking at your plot from the previous exercise, describe the relationship between these two variables.
Make sure to discuss the form, direction, and strength of the relationship as well as any unusual
observations.

Just as we used the mean and standard deviation to summarize a single variable, we can summarize the
relationship between these two variables by finding the line that best follows their association. Use the
following interactive function to select the line that you think does the best job of going through the cloud of
points. Note: you need to read this function into R using the source command. I uploaded a
copy of it to my website; the function was originally written by the authors of the Openlntro
book. This function is interactive: it will prompt you to click two points in the RStudio plot
window.

source("http://www. jkarreth.net/files/plot_ss.R")
plot_ss(x = mlbli$at_bats, y = mlbli$runs)
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## Click two points to make a line.

## Call:

## 1m(formula = y ~ x, data = pts)
##

## Coefficients:

## (Intercept) X

## -2789.2429 0.6305

##

## Sum of Squares: 123721.9

After running this command, you’ll be prompted to click two points on the plot to define a line. Once you’ve
done that, the line you specified will be shown in black and the residuals in blue. Note that there are 30
residuals, one for each of the 30 observations. Recall that the residuals are the difference between the observed
values and the values predicted by the line (AR, p. 78):

e =y — Ui
The most common way to do linear regression is to select the line that minimizes the sum of squared residuals.
To visualize the squared residuals, you can rerun the plot command and add the argument showSquares =

TRUE.

plot_ss(x = mlbli$at_bats, y = mlbli$runs, showSquares = TRUE)
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## Click two points to make a line.

## Call:

## lm(formula = y ~ x, data = pts)
##

## Coefficients:

## (Intercept) X

## -2789.2429 0.6305

#i#

## Sum of Squares: 123721.9

Note that the output from the plot_ss function provides you with the slope and intercept of your line as
well as the sum of squares.

3. Using plot_ss, choose a line that does a good job of minimizing the sum of squares. Run the function
several times. What was the smallest sum of squares that you got? How does it compare to your
colleagues?

The linear model

It is rather cumbersome to try to get the correct least squares line, i.e. the line that minimizes the sum of
squared residuals, through trial and error. Instead we can use the 1m function in R to fit the linear model
(a.k.a. regression line).

ml <- Im(runs ~ at_bats, data = mlbil1l)
The first argument in the function 1m is a formula that takes the form y ~ x. Here it can be read that we

want to make a linear model of runs as a function of at_bats. The second argument specifies that R should
look in the mlb11 data frame to find the runs and at_bats variables.



The output of 1m is an object that contains all of the information we need about the linear model that was
just fit. We can access this information using the summary function.

summary (m1)

##

## Call:

## 1m(formula = runs ~ at_bats, data = mlbil1l)

#it

## Residuals:

## Min 1Q Median 3Q Max

## -125.58 -47.05 -16.59 54.40 176.87

##

## Coefficients:

#t Estimate Std. Error t value Pr(>lt])

## (Intercept) -2789.2429 853.6957 -3.267 0.002871 *x*

## at_bats 0.6305 0.1545 4.080 0.000339 **x*
## ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
#it

## Residual standard error: 66.47 on 28 degrees of freedom
## Multiple R-squared: 0.3729, Adjusted R-squared: 0.3505
## F-statistic: 16.65 on 1 and 28 DF, p-value: 0.0003388

Let’s consider this output piece by piece. First, the formula used to describe the model is shown at the top.
After the formula you find the five-number summary of the residuals. The “Coefficients” table shown next is
key; its first column displays the linear model’s y-intercept and the coefficient of at_bats. With this table,
we can write down the least squares regression line for the linear model:

7 = —2789.2429 + 0.6305 * at__bats

One last piece of information we will discuss from the summary output is the Multiple R-squared, or more
simply, R?. The R? value represents the proportion of variability in the response variable that is explained by
the explanatory variable (AR, bottom of p. 83. For this model, 37.3% of the variability in runs is explained
by at-bats.

4. Fit a new model that uses homeruns to predict runs. Using the estimates from the R output, write the
equation of the regression line. What does the slope tell us in the context of the relationship between
success of a team and its home runs?

Summarizing the results of a regression model
For your applied work, you will need to present the results of a regression model in the form of a table or a
graph. R offers convenient functions for both. Here, we briefly look at the screenreg function to create a

nicely formatted table in the R console, and then its relatives, texreg for a a PDF file and htmlreg function,
which you can use to create a table for a Word document.

First, load the texreg package.

library(texreg)

Then, simply feed the model object, m1, to the texreg function:



screenreg(ml)

##

#i#

## Model 1

##
## (Intercept) -2789.24 *x
## (853.70)

## at_bats 0.63 *%*
## (0.15)

## ——————
## R™2 0.37

## Adj. R™2 0.35

## Num. obs. 30

##

## **x* p < 0.001, *x p < 0.01, * p < 0.05

We can customize this table in many ways. For your work, you at least want to simplify the number of
stars that are printed (if any) and provide custom coefficient names. The stars and custom.coef .names
arguments do this job:

screenreg(ml, stars = 0.05, custom.coef.names = c("Intercept", "At-bats"))
##

##

## Model 1

## —————
## Intercept -2789.24 x*
## (853.70)
## At-bats 0.63 x*
## (0.15)
## —————
## R™2 0.37
## Adj. R™2 0.35
## Num. obs. 30

##

## * p < 0.05

To create a table in your R data analysis notebook in PDF format, simply use texreg and make sure to add

results = "asis" to your R Markdown code chunk parameters:
texreg(ml, stars = 0.05, custom.coef.names = c("Intercept", "At-bats"),
caption = "Regression table", caption.above = TRUE)

And if you'd like to export a regression table to Word, use htmlreg, save the file in your working directory,
and open it with Word or Libre Office, and then copy and paste the table in your manuscript. Use the file
= argument to specify the name of the file. R will automatically save it to your current working directory.

htmlreg(ml, stars = 0.05, custom.coef.names = c("Intercept", "At-bats"),
caption = "Regression table", caption.above = TRUE, file = "modl.doc")



Table 1: Regression table

Model 1
Intercept —2789.24*

(853.70)
At-bats 0.63*

(0.15)
R? 0.37
Adj. R? 0.35
Num. obs. 30

*p < 0.05

Prediction and prediction errors

Let’s create a scatterplot with the least squares line laid on top.

plot(mlbli$runs ~ mlbli$at_bats)
abline(m1)

mlb11$runs
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The function abline plots a line based on its slope and intercept. Here, we used a shortcut by providing the
model m1, which contains both parameter estimates. This line can be used to predict y at any value of x.
When predictions are made for values of = that are beyond the range of the observed data, it is referred to as
extrapolation and is not usually recommended. However, predictions made within the range of the data are
more reliable. They’re also used to compute the residuals.

5. If a team manager saw the least squares regression line and not the actual data, how many runs would
he or she predict for a team with 5,578 at-bats? Is this an overestimate or an underestimate, and by
how much? In other words, what is the residual for this prediction?



Model diagnostics

To assess whether the linear model is reliable, we need to check for the assumptions (A1) linearity, (A2)
constant error variance, (3) normality of the errors, (A4) independence of observations, and (A5) no correlation
between z; and ¢;. (A4) and (Ab5) cannot be directly tested, and we will discuss them further in class.

o Linearity (A1l): You already checked if the relationship between runs and at-bats is linear using a
scatterplot. We should also verify this condition with a plot of the residuals vs. at-bats. Recall that any
code following a # is intended to be a comment that helps understand the code but is ignored by R.

plot(mi$residuals ~ mlbil$at_bats)
abline(h = 0, 1ty = 3) # adds a hortizontal dashed line at y = 0
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6. Is there any apparent pattern in the residuals plot? What does this indicate about the linearity of the
relationship between runs and at-bats?

o Constant error variance (A2): You can use the residuals plot to check whether the variance of the
errors is constant or changes across the range of the predictor.

7. Based on the plot in you just created, does the constant error variance condition appear to be met?

o Normality of the errors (A3): To check this condition, we can look at a histogram

hist(mi$residuals)

10



Histogram of m1$residuals
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ml$residuals

or a normal probability plot of the residuals.

qgnorm(ml$residuals)
qqline(mi$residuals) # adds diagonal line to the mormal prob plot
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Normal Q-Q Plot
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Theoretical Quantiles

8. Based on the histogram and the normal probability plot, does the nearly normal residuals condition
appear to be met?

Diagnostic plots in R
R also offers a convenient way of producing diagnostic plots to assess these assumptions. After creating a
linear regression model object, simply plot () that object. For now, I recommend using this command in the

following way. You can read up more on the options under ?plot.lm.

par (mfrow = c(2, 1))
plot(ml, which = c(1, 2))

12



Residuals vs Fitted
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par(mfrow = c(1, 1))

On Your Own

e Choose another traditional variable from m1b11 that you think might be a good predictor of runs.
Produce a scatterplot of the two variables and fit a linear model. At a glance, does there seem to be a
linear relationship?
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o How does this relationship compare to the relationship between runs and at_bats? Use the R? values
from the two model summaries to compare. Does your variable seem to predict runs better than
at_bats? How can you tell?

e Now that you can summarize the linear relationship between two variables, investigate the relationships
between runs and each of the other five traditional variables. Which variable best predicts runs?
Support your conclusion using the graphical and numerical methods we’ve discussed (for the sake of
conciseness, only include output for the best variable, not all five).

o Now examine the three newer variables. These are the statistics used by the author of Moneyball to
predict a teams success. In general, are they more or less effective at predicting runs that the old
variables? Explain using appropriate graphical and numerical evidence. Of all ten variables we've
analyzed, which seems to be the best predictor of runs? Using the limited (or not so limited) information
you know about these baseball statistics, does your result make sense?

e Check the model diagnostics for the regression model with the variable you decided was the best
predictor for runs.

This is a product of Openlntro that is released under a Creative Commons Attribution-ShareAlike 3.0
Unported. This tutorial was adapted for Openlntro by Andrew Bray and Mine Cetinkaya-Rundel from a
tutorial written by Mark Hansen of UCLA Statistics. It was slighlty modified by Johannes Karreth for use in
RPOS/RPAD 517 at the University at Albany, State University of New York.
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