
Tutorial 4: Inference & Hypothesis testing
Johannes Karreth
RPOS 517, Day 4

This tutorial shows you:

• how to sample from a variable
• how to create a sampling distribution
• how to use for-loops in R
• how to calculate and plot confidence intervals

Note on copying & pasting code from the PDF version of this tutorial: Please note that you may
run into trouble if you copy & paste code from the PDF version of this tutorial into your R script. When the
PDF is created, some characters (for instance, quotation marks or indentations) are converted into non-text
characters that R won’t recognize. To use code from this tutorial, please type it yourself into your R script or
you may copy & paste code from the source file for this tutorial which is posted on my website.

Saving your code (as usual)

If you are working with code and don’t need to produce an assignment or a report, save your code as an R
script rather than an R Markdown document. An R script contains only R commands and no descriptive
text. It should contain comments on your code. Comments are preceded by the # sign. Any code in the line
after a # sign is not executed by R.

To create a new script, click on File -> New -> R Script. This will open a blank document above the console.
As you go along you can copy and paste your code here and save it. This is a good way to keep track of your
code and be able to reuse it later. To run your code from this document, highlight the code and hit the Run
button, or highlight the code and hit command+enter or a mac or control+enter on a PC.

You’ll also want to save this script (code document). To do so click on the disk icon. The first time you hit
save, RStudio will ask for a file name; you can name it anything you like. Once you hit save you’ll see the file
appear under the Files tab in the lower right panel. You can reopen this file anytime by simply clicking on it.

Background

In the first part of this tutorial, we investigate the ways in which the statistics from a random sample of
data can serve as point estimates for population parameters. We’re interested in formulating a sampling
distribution of our estimate in order to learn about the properties of the estimate, such as its distribution.

The data

We consider real estate data from the city of Ames, Iowa. The details of every real estate transaction in Ames
is recorded by the City Assessor’s office. Our particular focus for this tutorial will be all residential home
sales in Ames between 2006 and 2010. This collection represents our population of interest. In this tutorial
we would like to learn about these home sales by taking smaller samples from the full population. Let’s load
the data.
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ames <- read.csv("http://www.jkarreth.net/files/ames.csv")

We see that there are quite a few variables in the data set, enough to do a very in-depth analysis. For this
tutorial, we’ll restrict our attention to just two of the variables: the above ground living area of the house
in square feet (Gr.Liv.Area) and the sale price (SalePrice). To save some effort throughout the tutorial,
create two variables with short names that represent these two variables.

area <- ames$Gr.Liv.Area
price <- ames$SalePrice

Let’s look at the distribution of area in our population of home sales by calculating a few summary statistics
and making a histogram.

summary(area)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 334 1126 1442 1500 1743 5642

hist(area)
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The unknown sampling distribution

In this tutorial we have access to the entire population, but this is rarely the case in real life. Gathering
information on an entire population is often extremely costly or impossible. Because of this, we often take a
sample of the population and use that to understand the properties of the population.
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If we were interested in estimating the mean living area in Ames based on a sample, we can use the following
command to survey the population.

samp1 <- sample(area, 50)

This command collects a simple random sample of size 50 from the vector area, which is assigned to samp1.
This is like going into the City Assessor’s database and pulling up the files on 50 random home sales. Working
with these 50 files would be considerably simpler than working with all 2930 home sales.

If we’re interested in estimating the average living area in homes in Ames using the sample, our best single
guess is the sample mean.

mean(samp1)

## [1] 1561.28

Depending on which 50 homes you selected, your estimate could be a bit above or a bit below the true
population mean of 1499.69 square feet. In general, though, the sample mean turns out to be a pretty good
estimate of the average living area, and we were able to get it by sampling less than 3% of the population.

Not surprisingly, every time we take another random sample, we get a different sample mean. It’s useful to
get a sense of just how much variability we should expect when estimating the population mean this way.
The distribution of sample means, called the sampling distribution, can help us understand this variability. In
this tutorial, because we have access to the population, we can build up the sampling distribution for the
sample mean by repeating the above steps many times. Here we will generate 5000 samples and compute the
sample mean of each.

sample_means50 <- rep(NA, 5000)

for(i in 1:5000){
samp <- sample(area, 50)
sample_means50[i] <- mean(samp)
}

hist(sample_means50)
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Histogram of sample_means50
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If you would like to adjust the bin width of your histogram to show a little more detail, you can do so by
changing the breaks argument.

hist(sample_means50, breaks = 25)
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Histogram of sample_means50
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Here we use R to take 5000 samples of size 50 from the population, calculate the mean of each sample, and
store each result in a vector called sample_means50. On the next page, we’ll review how this set of code
works.

Interlude: The for loop

Let’s take a break from the statistics for a moment to let that last block of code sink in. You have just run
your first for loop, a cornerstone of computer programming. The idea behind the for loop is iteration: it
allows you to execute code as many times as you want without having to type out every iteration. In the
case above, we wanted to iterate the two lines of code inside the curly braces that take a random sample
of size 50 from area then save the mean of that sample into the sample_means50 vector. Without the for
loop, this would be painful:

sample_means50 <- rep(NA, 5000)

samp <- sample(area, 50)
sample_means50[1] <- mean(samp)

samp <- sample(area, 50)
sample_means50[2] <- mean(samp)

samp <- sample(area, 50)
sample_means50[3] <- mean(samp)

samp <- sample(area, 50)
sample_means50[4] <- mean(samp)
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and so on. . .

With the for loop, these thousands of lines of code are compressed into a handful of lines. We’ve added one
extra line to the code below, which prints the variable i during each iteration of the for loop. Run this code.

sample_means50 <- rep(NA, 5000)

for(i in 1:5000){
samp <- sample(area, 50)
sample_means50[i] <- mean(samp)
print(i)
}

Let’s consider this code line by line to figure out what it does. In the first line we initialized a vector. In this
case, we created a vector of 5000 zeros called sample_means50. This vector will will store values generated
within the for loop.

The second line calls the for loop itself. The syntax can be loosely read as, “for every element i from 1 to
5000, run the following lines of code”. You can think of i as the counter that keeps track of which loop you’re
on. Therefore, more precisely, the loop will run once when i = 1, then once when i = 2, and so on up to i
= 5000.

The body of the for loop is the part inside the curly braces, and this set of code is run for each value of i.
Here, on every loop, we take a random sample of size 50 from area, take its mean, and store it as the ith
element of sample_means50.

In order to display that this is really happening, we asked R to print i at each iteration. This line of code is
optional and is only used for displaying what’s going on while the for loop is running.

The for loop allows us to not just run the code 5000 times, but to neatly package the results, element by
element, into the empty vector that we initialized at the outset.

Sample size and the sampling distribution

Mechanics aside, let’s return to the reason we used a for loop: to compute a sampling distribution, specifically,
this one.

hist(sample_means50)
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Histogram of sample_means50
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The sampling distribution that we computed tells us much about estimating the average living area in homes
in Ames. Because the sample mean is an unbiased estimator, the sampling distribution is centered at the true
average living area of the the population, and the spread of the distribution indicates how much variability is
induced by sampling only 50 home sales.

To get a sense of the effect that sample size has on our distribution, let’s build up two more sampling
distributions: one based on a sample size of 10 and another based on a sample size of 100.

sample_means10 <- rep(NA, 5000)
sample_means100 <- rep(NA, 5000)

for(i in 1:5000){
samp <- sample(area, 10)
sample_means10[i] <- mean(samp)
samp <- sample(area, 100)
sample_means100[i] <- mean(samp)

}

Here we’re able to use a single for loop to build two distributions by adding additional lines inside the curly
braces. Don’t worry about the fact that samp is used for the name of two different objects. In the second
command of the for loop, the mean of samp is saved to the relevant place in the vector sample_means10.
With the mean saved, we’re now free to overwrite the object samp with a new sample, this time of size 100.
In general, anytime you create an object using a name that is already in use, the old object will get replaced
with the new one.

To see the effect that different sample sizes have on the sampling distribution, plot the three distributions on
top of one another.
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par(mfrow = c(3, 1))

xlimits <- range(sample_means10)

hist(sample_means10, breaks = 20, xlim = xlimits)
hist(sample_means50, breaks = 20, xlim = xlimits)
hist(sample_means100, breaks = 20, xlim = xlimits)

Histogram of sample_means10
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Histogram of sample_means50
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Histogram of sample_means100
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par(mfrow = c(1, 1))

The first command specifies that you’d like to divide the plotting area into 3 rows and 1 column of plots (to
return to the default setting of plotting one at a time, use par(mfrow = c(1, 1))). The breaks argument
specifies the number of bins used in constructing the histogram. The xlim argument specifies the range of
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the x-axis of the histogram, and by setting it equal to xlimits for each histogram, we ensure that all three
histograms will be plotted with the same limits on the x-axis.

Sampling from Ames, Iowa

If you have access to data on an entire population, say the size of every house in Ames, Iowa, it’s straight
forward to answer questions like, “How big is the typical house in Ames?” and “How much variation is there
in sizes of houses?”. If you have access to only a sample of the population, as is often the case, the task
becomes more complicated. What is your best guess for the typical size if you only know the sizes of several
dozen houses? This sort of situation requires that you use your sample to make inference on what your
population looks like.

The data

In the first part of this tutorial, we looked at the population data of houses from Ames, Iowa. Let’s start by
loading that data set anew.

ames <- read.csv("http://www.jkarreth.net/files/ames.csv")

In this second part of the tutorial, we’ll start with a simple random sample of size 60 from the population.
Specifically, this is a simple random sample of size 60. Note that the data set has information on many
housing variables, but for the first portion of the tutorial we’ll focus on the size of the house, represented by
the variable Gr.Liv.Area.

population <- ames$Gr.Liv.Area
samp <- sample(population, 60)

Confidence intervals

One of the most common ways to describe the typical or central value of a distribution is to use the mean. In
this case we can calculate the mean of the sample using,

sample_mean <- mean(samp)

Return for a moment to the question that first motivated this tutorial: based on this sample, what can we
infer about the population? Based only on this single sample, the best estimate of the average living area of
houses sold in Ames would be the sample mean, usually denoted as x̄ (here we’re calling it sample_mean).
That serves as a good point estimate but it would be useful to also communicate how uncertain we are of
that estimate. This can be captured by using a confidence interval.

We can calculate a 95% confidence interval for a sample mean by adding and subtracting 1.96 standard errors
to the point estimate (See Section 4.2.3 of the textbook if you are unfamiliar with this formula).

se <- sd(samp) / sqrt(60)
lower <- sample_mean - 1.96 * se
upper <- sample_mean + 1.96 * se
c(lower, upper)

## [1] 1327.416 1498.451
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This is an important inference that we’ve just made: even though we don’t know what the full population
looks like, we’re 95% confident that the true average size of houses in Ames lies between the values lower and
upper. There are a few conditions that must be met for this interval to be valid.

Confidence levels

In this case we have the luxury of knowing the true population mean since we have data on the entire
population. This value can be calculated using the following command:

mean(population)

## [1] 1499.69

Each student in your class should have gotten a slightly different confidence interval. What proportion of
those intervals would you expect to capture the true population mean? Why? If you are working in this
tutorial in a classroom, collect data on the intervals created by other students in the class and calculate the
proportion of intervals that capture the true population mean.

Using R, we’re going to recreate many samples to learn more about how sample means and confidence
intervals vary from one sample to another. Loops come in handy here (If you are unfamiliar with loops,
review the first part of this tutorial).

Here is the rough outline:

• Obtain a random sample.
• Calculate and store the sample’s mean and standard deviation.
• Repeat steps (1) and (2) 50 times.
• Use these stored statistics to calculate many confidence intervals.

But before we do all of this, we need to first create empty vectors where we can save the means and standard
deviations that will be calculated from each sample. And while we’re at it, let’s also store the desired sample
size as n. I choose n = 75 (75 draws from the 2930 homes in Iowa) but could pick any number below 2930
here.

samp_mean <- rep(NA, 50)
samp_sd <- rep(NA, 50)
n <- 75

Now we’re ready for the loop where we calculate the means and standard deviations of 50 random samples.
Note that I am setting a seed here to make sure that you obtain the exact same results when you work
through this tutorial.

set.seed(123)
for(i in 1:50){

samp <- sample(population, n) # obtain a sample of size n = 60 from the population
samp_mean[i] <- mean(samp) # save sample mean in ith element of samp_mean
samp_sd[i] <- sd(samp) # save sample sd in ith element of samp_sd

}

Lastly, we construct the confidence intervals.
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lower_vector <- samp_mean - 1.96 * samp_sd / sqrt(n)
upper_vector <- samp_mean + 1.96 * samp_sd / sqrt(n)

Lower bounds of these 50 confidence intervals are stored in lower_vector, and the upper bounds are in
upper_vector. Let’s view the first interval.

c(lower_vector[1], upper_vector[1])

## [1] 1428.928 1684.646

Now, you can plot these 50 confidence intervals. The authors of the OpenIntro project provide a handy
function for this. You can read it in from my website http://www.jkarreth.net/files/plot_ci.R using the
source() function:

source("http://www.jkarreth.net/files/plot_ci.R")

Or you can copy and paste the functions below in your R script (avoid copying & pasting from the PDF
version of this tutorial, as indentations might get lost):

contains <- function(lo,hi,m){
if(m>= lo & m <= hi) return(TRUE)
else return(FALSE)

}

plot_ci <- function(lo, hi, m){
par(mar=c(2, 1, 1, 1), mgp=c(2.7, 0.7, 0))
k <- 50
ci.max <- max(rowSums(matrix(c(-1*lo,hi),ncol=2)))

xR <- m + ci.max*c(-1, 1)
yR <- c(0, 41*k/40)

plot(xR, yR, type='n', xlab='', ylab='', axes=FALSE)
abline(v=m, lty=2, col='#00000088')
axis(1, at=m, paste("mu = ",round(m,4)), cex.axis=1.15)
#axis(2)
for(i in 1:k){

x <- mean(c(hi[i],lo[i]))
ci <- c(lo[i],hi[i])

if(contains(lo[i],hi[i],m)==FALSE){
col <- "#F05133"

points(x, i, cex=1.4, col=col)
# points(x, i, pch=20, cex=1.2, col=col)

lines(ci, rep(i, 2), col=col, lwd=5)
}

col <- 1
points(x, i, pch=20, cex=1.2, col=col)

lines(ci, rep(i, 2), col=col)
}

par(mfrow = c(1, 1))
}
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Using this function yields the plot below. Note that it automatically highlights in red the confidence intervals
that do not contain the population mean.

plot_ci(lower_vector, upper_vector, mean(population))

mu =  1499.6904

[Advanced content] If you wanted to plot confidence intervals yourself using ggplot2, you can use the
following code without having to use the above function.

First, create a data frame with the sample means and lower and upper ends of the confidence intervals.

library(ggplot2)
confint.dat <- data.frame(samp_mean, lower_vector, upper_vector,

i = 1:length(samp_mean))

Next, create a variable that indicates whether the confidence interval covers the mean. This variable is only
created for coloring the confidence intervals in the resulting plot. It uses the ifelse function, which is very
handy for creating variables based on conditions. Its basic logic:

newvariable <- ifelse([condition on oldvariable],
[value of newvar if condition is met],
[value of newvar if condition is not met])

See ?ifelse or http://www.ats.ucla.edu/stat/r/library/intro_function.htm for more information.
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confint.dat$excl0 <- ifelse(confint.dat$upper_vector < mean(population) |
mean(population) < confint.dat$lower_vector, 1, 0)

Lastly, we construct the plot through a series of ggplot commands:

p <- ggplot(data = confint.dat, aes(x = i, y = samp_mean, ymin = lower_vector,
ymax = upper_vector, colour = factor(excl0))) + geom_pointrange() +
scale_x_continuous(breaks = NULL) + geom_hline(yintercept = mean(population)) +
scale_colour_manual(values = c("black", "red")) + guides(colour = FALSE) +
ylab("Sample mean") + xlab("") + coord_flip()

p

1300 1400 1500 1600 1700 1800
Sample mean

This tutorial is based on a product of OpenIntro that was released under a Creative Commons Attribution-
ShareAlike 3.0 Unported license. The original tutorial was adapted for OpenIntro by Andrew Bray and Mine
Cetinkaya-Rundel from a tutorial written by Mark Hansen of UCLA Statistics. It was modified by Johannes
Karreth for use in RPOS/RPAD 517 at the University at Albany, State University of New York.
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