
Tutorial 13: Generalized linear models
Johannes Karreth

RPOS 517, Day 13

This tutorial shows you:

• how to fit logit, probit, and other generalized linear models in R
• how to create effect plots for these models
• how to calculate other quantities of interest for GLMs

Note on copying & pasting code from the PDF version of this tutorial: Please note that you may
run into trouble if you copy & paste code from the PDF version of this tutorial into your R script. When the
PDF is created, some characters (for instance, quotation marks or indentations) are converted into non-text
characters that R won’t recognize. To use code from this tutorial, please type it yourself into your R script or
you may copy & paste code from the source file for this tutorial which is posted on my website.

Note on R functions discussed in this tutorial: I don’t discuss many functions in detail here and
therefore I encourage you to look up the help files for these functions or search the web for them before you use
them. This will help you understand the functions better. Each of these functions is well-documented either
in its help file (which you can access in R by typing ?ifelse, for instance) or on the web. The Companion to
Applied Regression (see our syllabus) also provides many detailed explanations.

As always, please note that this tutorial only accompanies the other materials for Day 13 and that you need
to have worked through the reading for that day before tackling this tutorial. More than on the other
days of our seminar so far, these notes only scratch the surface of the theory behind GLMs. I
strongly encourage you to re-read in-depth chapters 14 and 15 in AR and other materials before you use
GLMs in your work.

Noncontinuous outcomes and OLS

So far, we have only encountered continuous outcomes: variables with values across a continuous range,
such as wages, life expectancy, feeling thermometers, etc. Many variables around social phenomena are not
continuous: whether a citizen voted; which party she voted for; whether two countries go to war; whether a
patient complies with a prescription; how a consumer rates a product; etc.

Binary outcomes

Among these outcomes, you could treat binary outcomes as continuous and fit a so-called linear probability
model (see AR section 14.1.1), but will encounter the following issues (paraphrased from AR):

(a) the residuals will be dichotomous and therefore not normally distributed
(b) the error variance will not be constant
(c) the expected value of the errors (i.e., the linearity assumption) only holds for some values of a continuous

x

(d) the model will yield predicted values (ŷ) not just between 0 and 1 (which you could interpret as the
probability of an outcome of 1), but also below 0 and 1 - because it estimates a linear relationship
between x and y. If you are fitting a model for predictive purposes, this could be inconvenient.
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While (d) may not be a concern for you, (a), (b), and (c) present issues for OLS because the desirable qualities
of the OLS estimator depend on assumptions about the error term. If these assumptions are violated, OLS
may not be the best linear unbiased estimator (BLUE) anymore. To remedy this problem, one can assume a
distribution for the latent probability of an outcome of 1.

Other noncontinuous outcomes

Before we advance, think about other types of noncontinuous outcomes as well (see AR sections assigned for
today and below for more details):

• ordered outcomes (e.g., rating a product as dissatisfactory, satisfactory, and excellent)
• discrete outcomes (e.g., vote choices in a multiparty system)
• count outcomes (with many values of 0 and 1 and decreasing frequency of higher values)

Binary outcomes: illustration

A typical binary outcome in political science is whether a representative votes for or against a particular
bill. You can think of the actual vote as the realization of a legislator’s latent position on an issue (compare
this to section 14.1.3 in AR). If we place this latent position on a continuous scale, we may often observe
the following relationship between latent position (x) and the probability of a “yes” vote: on positions at
low values of the latent scale, legislators are highly unlikely to vote “yes”. Only for legislators in the middle
quintile (for example purposes) of the latent positions do we observe somewhat similar probabilities for a
“yes” and “no” vote; and legislators close high values are all very likely to vote “yes”. In the visualization
below, you can see why a linear relationship between latent position and the probability to vote would not
accurately reflect the data-generating process of what we observe as votes:

P
ro

ba
bi

lit
y 

of
 Y

es
 v

ot
e

Latent position (linear predictor)

0.
00

0.
50

1.
00

Yes votes

No votes

In this figure, you can see how the DGP (the solid line) creates observed Yes and No votes (the red and blue
points): Yes votes when the probability of a Yes vote exceeds 0.5, and No votes below. Also note that these
data do not include any random component: the middle value of the latent position clearly separates Yes and
No votes.
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You can also see how the above problems play out: the OLS estimate (the dashed line) doesn’t fit the true
relationship between the latent position and the probability of Yes votes (the solid line) all that well. In
addition, the OLS estimates return probabilities below 0 and above 1.

If you return to AR, you can identify the function that connects the probability of a Yes vote and the
latent position as the cumulative density function (CDF) of the link function that we use to map the
observed binary variable to an unobserved/latent linear predictor. In the case above, the CDF is the logistic
distribution. Because the link function helps map a predictor to a non-continuous outcome (in this case, an
observed 0 or 1), you can think of models using link functions as generalized linear models - the topic of this
week.

Assessing the relationship between x and y in GLMs

The figure above also shows you at least one more important quality of GLMs: the “effect” of a predictor on
an outcome is not constant. That is, you cannot make a statement of the form, “a one-unit increase in x is
associated with a 0.2 increase in the probability of a Yes vote.” Instead, the relationship between x and Pr(y)
depends on the value of x. In the example above, the relationship is almost flat at low and high values of x,
but quite steep in the middle. Also note that the relationship between x and Pr(y) is fairly linear around the
center of x.

Obtaining estimates via maximum likelihood

Lastly, and as AR explains in more detail in section 14.1.5, you may already have concluded that GLMs
cannot be fit by minimizing squared residuals, as you did to identify the parameter estimates in OLS. Instead,
GLMs are fit using maximum likelihood estimation (MLE). A discussion of MLE goes beyond our course, but
you should take a look at steps 1-3 in AR p. 354, which explains the logic behind MLE in general terms.

Example of a binary outcome: Female labor participation

In this section, I demonstrate the use of one GLM, the logit (or logistic regression) model for binary outcomes.
Generally, GLMs are named after the link function they employ. Estimators using the logistic link function
are logistic regression (or logit) models, for instance. We’ll work with an example from John Fox’s teaching
datasets on female labor participation. The original source for the article is Mroz, T. A. (1987). “The
sensitivity of an empirical model of married women’s hours of work to economic and statistical assumptions.”
Econometrica 55, 765–799. The dataset is available at John Fox’s website. This dataset is a sample of “753
married white women between the ages of 30 and 60 in 1975, with 428 working at some time during the year”
(Mroz 1987: 769). It contains the following variables:

Variable Description
lfp Labor-force participation: no, yes.
k5 Number of children 5 years old or younger.
k618 Number of children 6 to 18 years old.
age Age in years
wc Wife’s college attendance, no; yes.
hc Husband’s college attendance: no, yes.
lwg Log expected wage rate; for women in the labor force
inc Family income exclusive of wife’s income

Because it is stored online in tab-separated format, I’ll read it into R using the read.table() function.
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mroz.dat <- read.table("http://socserv.mcmaster.ca/jfox/Books/Applied-Regression-3E/datasets/Mroz.txt")
summary(mroz.dat)

## lfp k5 k618 age wc
## no :325 Min. :0.0000 Min. :0.000 Min. :30.00 no :541
## yes:428 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:36.00 yes:212
## Median :0.0000 Median :1.000 Median :43.00
## Mean :0.2377 Mean :1.353 Mean :42.54
## 3rd Qu.:0.0000 3rd Qu.:2.000 3rd Qu.:49.00
## Max. :3.0000 Max. :8.000 Max. :60.00
## hc lwg inc
## no :458 Min. :-2.0541 Min. :-0.029
## yes:295 1st Qu.: 0.8181 1st Qu.:13.025
## Median : 1.0684 Median :17.700
## Mean : 1.0971 Mean :20.129
## 3rd Qu.: 1.3997 3rd Qu.:24.466
## Max. : 3.2189 Max. :96.000

To identify correlates of a married woman’s propensity to be working, we fit a logistic regression model using
the glm() function in R. This function works just like lm(), but you have to specify the link function (see
above). In the case of a binary outcome, we’ll use the logit link function by specifying the argument family
= binomial(link = "logit").

mroz.logit <- glm(lfp ~ k5 + k618 + age + wc + hc + lwg + inc, data = mroz.dat,
family = binomial(link = "logit"))

summary(mroz.logit)

##
## Call:
## glm(formula = lfp ~ k5 + k618 + age + wc + hc + lwg + inc, family = binomial(link = "logit"),
## data = mroz.dat)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1062 -1.0900 0.5978 0.9709 2.1893
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.182140 0.644375 4.938 7.88e-07 ***
## k5 -1.462913 0.197001 -7.426 1.12e-13 ***
## k618 -0.064571 0.068001 -0.950 0.342337
## age -0.062871 0.012783 -4.918 8.73e-07 ***
## wcyes 0.807274 0.229980 3.510 0.000448 ***
## hcyes 0.111734 0.206040 0.542 0.587618
## lwg 0.604693 0.150818 4.009 6.09e-05 ***
## inc -0.034446 0.008208 -4.196 2.71e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1029.75 on 752 degrees of freedom
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## Residual deviance: 905.27 on 745 degrees of freedom
## AIC: 921.27
##
## Number of Fisher Scoring iterations: 4

This output looks familiar to you: coefficients, standard errors, z-values, and p-values. While you may often
hear that coefficients from logit models (and other GLMs) are difficult to interpret, that is not necessarily
true. The only difficulty with coefficients like those from a logit model is that the relationship between x and
Pr(y) now depends on the value of x (see above). But keeping in mind the logit curve you saw above, and
doing some calculations involving the logit cumulative density function, you can calculate that the effect of x
on Pr(y) is about 0.25 × β at the maximum steep point of the curve (at Pr(y) = 0.5). That’s good enough
for a quick interpretation: a one-unit increase of x is associated with a maximum of a 0.25 × β increase in the
probability of y being 1.

Predicted probabilities

But to take advantage of the nonlinear relationship estimated by the logit model, you should investigate
the predicted probability of a “1” outcome across the range of each predictor. To do this, use the “effects”
package written by John Fox. It works in two steps: first, calculate the effect of a predictor; second, plot
the predictor. The package provides a shorthand to plot all effects. We’ll look at this first:

# install.packages("effects")
library(effects)
all.effects <- allEffects(mod = mroz.logit)
summary(all.effects)

## model: lfp ~ k5 + k618 + age + wc + hc + lwg + inc
##
## k5 effect
## k5
## 0 0.5 1 1.5 2 2.5
## 0.65959332 0.48251362 0.30971959 0.17757166 0.09411937 0.04761597
## 3
## 0.02349352
##
## Lower 95 Percent Confidence Limits
## k5
## 0 0.5 1 1.5 2 2.5
## 0.617154812 0.436140401 0.243444533 0.114715652 0.049217887 0.020201735
## 3
## 0.008133988
##
## Upper 95 Percent Confidence Limits
## k5
## 0 0.5 1 1.5 2 2.5
## 0.69961721 0.52919000 0.38485901 0.26457539 0.17255031 0.10812654
## 3
## 0.06592884
##
## k618 effect
## k618
## 0 2 4 6 8

5



## 0.5989532 0.5675750 0.5356451 0.5034203 0.4711670
##
## Lower 95 Percent Confidence Limits
## k618
## 0 2 4 6 8
## 0.5401157 0.5229579 0.4394343 0.3486106 0.2660092
##
## Upper 95 Percent Confidence Limits
## k618
## 0 2 4 6 8
## 0.6550704 0.6111222 0.6292740 0.6575769 0.6865513
##
## age effect
## age
## 30 35 40 45 50 55 60
## 0.7506321 0.6873230 0.6161600 0.5396486 0.4612219 0.3846689 0.3134304
##
## Lower 95 Percent Confidence Limits
## age
## 30 35 40 45 50 55 60
## 0.6770939 0.6301447 0.5740968 0.4982728 0.4032849 0.3079293 0.2246363
##
## Upper 95 Percent Confidence Limits
## age
## 30 35 40 45 50 55 60
## 0.8120711 0.7393185 0.6565542 0.5804851 0.5202258 0.4676112 0.4183839
##
## wc effect
## wc
## no yes
## 0.5215977 0.7096569
##
## Lower 95 Percent Confidence Limits
## wc
## no yes
## 0.4730588 0.6274663
##
## Upper 95 Percent Confidence Limits
## wc
## no yes
## 0.5697321 0.7800700
##
## hc effect
## hc
## no yes
## 0.5670810 0.5942794
##
## Lower 95 Percent Confidence Limits
## hc
## no yes
## 0.5109247 0.5230778
##
## Upper 95 Percent Confidence Limits
## hc
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## no yes
## 0.6215653 0.6617255
##
## lwg effect
## lwg
## -2 -1 0 1 2 3
## 0.1737788 0.2780036 0.4134569 0.5634068 0.7025966 0.8122027
##
## Lower 95 Percent Confidence Limits
## lwg
## -2 -1 0 1 2 3
## 0.07725509 0.16989422 0.33107929 0.52386555 0.63240897 0.70524162
##
## Upper 95 Percent Confidence Limits
## lwg
## -2 -1 0 1 2 3
## 0.3457173 0.4200922 0.5009805 0.6021582 0.7643758 0.8865915
##
## inc effect
## inc
## 0 20 40 60 80
## 0.7324514 0.5788775 0.4083571 0.2573687 0.1482215
##
## Lower 95 Percent Confidence Limits
## inc
## 0 20 40 60 80
## 0.65607467 0.53987096 0.32591408 0.15192987 0.06157788
##
## Upper 95 Percent Confidence Limits
## inc
## 0 20 40 60 80
## 0.7971121 0.6169238 0.4963004 0.4013519 0.3157571

Summarizing this object returns point estimates and 95% confidence intervals for predicted probabilities of
being in the labor force across the range of each predictor.

To plot these effects, simply use the plot() function and add the option rescale.axis = FALSE:

plot(all.effects, rescale.axis = FALSE, ylim = c(0, 1))
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To have more control over these plots, you can plot individual effects as follows:

inc.eff <- effect(mod = mroz.logit, term = "inc")
summary(inc.eff)

##
## inc effect
## inc
## 0 20 40 60 80
## 0.7324514 0.5788775 0.4083571 0.2573687 0.1482215
##
## Lower 95 Percent Confidence Limits
## inc
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## 0 20 40 60 80
## 0.65607467 0.53987096 0.32591408 0.15192987 0.06157788
##
## Upper 95 Percent Confidence Limits
## inc
## 0 20 40 60 80
## 0.7971121 0.6169238 0.4963004 0.4013519 0.3157571

plot(inc.eff, rescale.axis = FALSE, ylim = c(0, 1),
main = "Effect of family income on Pr(Working)",
xlab = "Family income in $1000 (exclusive wife's income)",
ylab = "Pr(Working)")
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Lastly, note that GLMs do not render R2 as a meaningful model fit statistic. There are plenty of alternative
measures for model fit. One of them is the proportional reduction of error: how much does the model better
classify outcomes than does the modal prediction (i.e., predicting the modal outcome for each observation)?
To calculate PRE, you can use the pre() function from Dave Armstrong’s “DAMisc” package.

# install.packages("DAmisc")
library(DAMisc)
pre(mroz.logit)

## mod1: lfp ~ k5 + k618 + age + wc + hc + lwg + inc
## mod2: lfp ~ 1
##
## Analytical Results
## PMC = 0.568
## PCP = 0.693
## PRE = 0.289
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## ePMC = 0.509
## ePCP = 0.585
## ePRE = 0.154

This discussion barely scratches the surface of GLMs and maximum likelihood estimation.
Please see AR and the syllabus for further reading recommendations. Please also know that
many of the terms we’ve discussed for OLS (e.g., robust standard errors, fixed effects, inter-
action terms) work differently for GLMs.

Example of a binary outcome: Voting on NAFTA

Our second, in-class, example addresses the correlates of U.S. Representatives’ vote choice on the North
American Free Trade Agreement in 1993. The data come from the article “The Strategic Timing of Position
Taking in Congress: A Study of the North American Free Trade Agreement” by Janet Box-Steffensmeier,
Laura Arnold, and Chris Zorn in the APSR in 1993. Replication data for the article are available at
http://hdl.handle.net/1902.1/15557. I renamed some of the variables and uploaded the modified version of
the data to my website. See the article for a description of the research question and variables.

nafta.dat <- read.csv("http://www.jkarreth.net/files/naftavote.csv")
summary(nafta.dat)

## pronafta unionmem perotvot
## Min. :0.0000 Min. :-1.030e-01 Min. :-1.528e-01
## 1st Qu.:0.0000 1st Qu.:-4.750e-02 1st Qu.:-4.343e-02
## Median :1.0000 Median : 1.222e-04 Median : 1.100e-02
## Mean :0.5392 Mean : 8.379e-05 Mean : 2.000e-08
## 3rd Qu.:1.0000 3rd Qu.: 4.488e-02 3rd Qu.: 4.572e-02
## Max. :1.0000 Max. : 2.013e-01 Max. : 1.469e-01
## NA's :1
## mexstate hhcenter corpcont labcont
## Min. :0.0000 Min. :-1.6200880 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:-0.5729380 1st Qu.:0.0700 1st Qu.:0.0000
## Median :0.0000 Median :-0.1810879 Median :0.1400 Median :0.0600
## Mean :0.2092 Mean : 0.0000003 Mean :0.1511 Mean :0.1018
## 3rd Qu.:0.0000 3rd Qu.: 0.4400119 3rd Qu.:0.2100 3rd Qu.:0.1750
## Max. :1.0000 Max. : 2.6503120 Max. :0.4200 Max. :0.4800
##
## democrat district name
## Min. :0.0000 Min. : 0.000 Johnson: 5
## 1st Qu.:0.0000 1st Qu.: 3.000 Smith : 5
## Median :1.0000 Median : 6.000 Andrews: 3
## Mean :0.5931 Mean : 9.963 Brown : 3
## 3rd Qu.:1.0000 3rd Qu.:13.000 Collins: 3
## Max. :1.0000 Max. :52.000 Lewis : 3
## (Other):413

nafta.dat$pronafta <- factor(nafta.dat$pronafta)
nafta.dat$mexstate <- factor(nafta.dat$mexstate)
nafta.dat$democrat <- factor(nafta.dat$democrat)

logit.mod <- glm(pronafta ~ unionmem + mexstate + hhcenter +
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corpcont + labcont + democrat,
data = nafta.dat,
family = binomial(link = "logit"))

library(effects)
plot(allEffects(logit.mod), rescale.axis = FALSE, ylim = c(0, 1))

unionmem effect plot

unionmem

pr
on

af
ta

0.0

0.2

0.4

0.6

0.8

1.0

−0.10−0.05  0.00  0.05  0.10  0.15  0.20

mexstate effect plot

mexstate

pr
on

af
ta

0.0

0.2

0.4

0.6

0.8

1.0

0 1

hhcenter effect plot

hhcenter
pr

on
af

ta

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5  0.0  0.5  1.0  1.5  2.0

corpcont effect plot

corpcont

pr
on

af
ta

0.0

0.2

0.4

0.6

0.8

1.0

 0.0  0.1  0.2  0.3  0.4

labcont effect plot

labcont

pr
on

af
ta

0.0

0.2

0.4

0.6

0.8

1.0

 0.0  0.1  0.2  0.3  0.4

democrat effect plot

democrat

pr
on

af
ta

0.0

0.2

0.4

0.6

0.8

1.0

0 1

Note that using the probit instead of logit link function returns identical predicted probabilities:

probit.mod <- glm(pronafta ~ unionmem + mexstate + hhcenter +
corpcont + labcont + democrat,

data = nafta.dat,
family = binomial(link = "probit"))
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plot(allEffects(probit.mod), rescale.axis = FALSE, ylim = c(0, 1))
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Example of an ordered outcomes: Beer ratings

This example estimates an ordered logit model to identify correlates of how an individual rated 35 different
beers. We will discuss more details in class. The outcome variable, quality takes three values, 1, 2, and 3,
for how the rater evaluated each beer’s quality (low, medium, and high).

beer.dat <- read.csv("http://www.jkarreth.net/files/beer.csv")
summary(beer.dat)
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## price alcohol quality
## Min. :1.590 Min. :2.300 Min. :1.000
## 1st Qu.:2.490 1st Qu.:4.500 1st Qu.:1.000
## Median :2.650 Median :4.700 Median :2.000
## Mean :3.027 Mean :4.577 Mean :2.029
## 3rd Qu.:3.250 3rd Qu.:4.900 3rd Qu.:3.000
## Max. :7.190 Max. :5.500 Max. :3.000

To estimate the ordered logit model, you can use the polr() function from the “MASS” package. To estimate
the model, you have to convert the outcome to a factor variable.

# install.packages("MASS")
library(MASS)
beer.dat$quality <- as.factor(beer.dat$quality)
beer.mod <- polr(quality ~ price + alcohol, data = beer.dat,

method = "logistic")

plot(allEffects(beer.mod), rescale.axis = FALSE, ylim = c(0, 1))
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plot(allEffects(beer.mod), rescale.axis = FALSE, ylim = c(0, 1), style = "stacked")
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Example of a categorical outcome: Vote choice

This example estimates a multinomial logit model to identify correlates of party vote choice in Austrian
elections. We will discuss more details in class. The outcome variable is vote choice for one of Austria’s
four major parties: the Greens (on the left), the SPÖ (center-left), the ÖVP (center-right), and the FPÖ
(far-right). Predictors include an assessment of the development of the economy under the incumbent party
(the SPÖ), respondents left/right self-placement, and some demographic characteristics.

To fit the multinomial logit model, you can use the multinom() function from the “nnet” package.

votes.dat <- read.csv("http://www.jkarreth.net/files/austriavote.csv")
summary(votes.dat)

## econwor econbet age income
## Min. :0.0000 Min. :0.0000 Min. :19.00 Min. : 1.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:34.00 1st Qu.: 6.000
## Median :0.0000 Median :0.0000 Median :44.00 Median : 9.000
## Mean :0.4634 Mean :0.1761 Mean :46.26 Mean : 8.894
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:57.00 3rd Qu.:12.000
## Max. :1.0000 Max. :1.0000 Max. :95.00 Max. :14.000
## rural gender leftrt vote
## Min. :1.000 Min. :1.0 Min. : 0.000 FPO : 77
## 1st Qu.:3.000 1st Qu.:1.0 1st Qu.: 5.000 Green: 89
## Median :5.000 Median :1.0 Median : 5.000 OVP :593
## Mean :3.854 Mean :1.5 Mean : 5.452 SPO :456
## 3rd Qu.:5.000 3rd Qu.:2.0 3rd Qu.: 7.000
## Max. :5.000 Max. :2.0 Max. :10.000
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# install.packages("nnet")
library(nnet)
votes.dat$econwor <- factor(votes.dat$econwor)
votes.dat$female <- factor(votes.dat$gender, levels = c(1, 2), labels = c("male", "female"))
votes.mod <- multinom(vote ~ econwor + age + income + rural + female + leftrt, data = votes.dat)

## # weights: 32 (21 variable)
## initial value 1684.347649
## iter 10 value 1220.383764
## iter 20 value 1121.427609
## iter 30 value 1113.300047
## iter 30 value 1113.300045
## iter 30 value 1113.300045
## final value 1113.300045
## converged

summary(votes.mod)

## Call:
## multinom(formula = vote ~ econwor + age + income + rural + female +
## leftrt, data = votes.dat)
##
## Coefficients:
## (Intercept) econwor1 age income rural
## Green 0.7711522 -1.2290573 -0.013456818 0.01776986 0.6073459
## OVP -0.3461488 -0.7316678 0.007265787 0.00926312 0.5485146
## SPO 2.6916050 -2.0134602 0.004026299 -0.04141072 0.6549246
## femalefemale leftrt
## Green 0.9473325 -0.3789252
## OVP 0.3240601 0.0867785
## SPO 0.3212995 -0.3942745
##
## Std. Errors:
## (Intercept) econwor1 age income rural femalefemale
## Green 0.8847837 0.3515757 0.011424612 0.04623279 0.11349515 0.3328014
## OVP 0.6853877 0.2844044 0.008587375 0.03532260 0.08287117 0.2548040
## SPO 0.7096441 0.2954789 0.008989792 0.03740926 0.08926515 0.2690964
## leftrt
## Green 0.09341987
## OVP 0.07049421
## SPO 0.07623634
##
## Residual Deviance: 2226.6
## AIC: 2268.6

plot(allEffects(votes.mod), rescale.axis = FALSE, ylim = c(0, 1))
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