
Tutorial 11: Interaction terms
Johannes Karreth

RPOS 517, Day 11

This tutorial shows you:

• how to specify regression models with interaction terms
• (briefly) how to interpret interaction terms (refer to AR ch. 7 and Brambor et al. for a more detailed

treatment)
• how to graph marginal/conditional effects from regression estimates

Note on copying & pasting code from the PDF version of this tutorial: Please note that you may
run into trouble if you copy & paste code from the PDF version of this tutorial into your R script. When the
PDF is created, some characters (for instance, quotation marks or indentations) are converted into non-text
characters that R won’t recognize. To use code from this tutorial, please type it yourself into your R script or
you may copy & paste code from the source file for this tutorial which is posted on my website.

Note on R functions discussed in this tutorial: I don’t discuss many functions in detail here and
therefore I encourage you to look up the help files for these functions or search the web for them before you use
them. This will help you understand the functions better. Each of these functions is well-documented either
in its help file (which you can access in R by typing ?ifelse, for instance) or on the web. The Companion to
Applied Regression (see our syllabus) also provides many detailed explanations.

As always, please note that this tutorial only accompanies the other materials for Day 11 and that you are
expected to have worked through the reading for that day before tackling this tutorial.

Note: You must have read Brambor, Clark & Golder (2006) before working on this tutorial.

Interaction terms in regression

Interaction terms enter the regression equation as the product of two constitutive terms, x1 and x2. For this
product term x1x3, the regression equation adds a separate coefficient β3.

y = α+ β1x1 + β2x2 + β3x1x2

Example 1: one binary, one continuous term

In thinking about interaction terms, it helps to first simplify by working through the prediction of the
regression equation for different values of two predictors, x1 and x2. We can imagine a continuous outcome y,
e.g. the income of Hollywood actors, that we predict with two variables. The first, x1, is a binary variable
such as female gender; it takes on values of 0 (males) and 1 (females) only. The second, x2, is a continuous
variable, ranging from −5 to +5, such as a (centered and standardized) measure of age. In this case, I’m
using the term “effect” loosely and non-causally. An interaction term expresses the idea that the effect of one
variable depends on the value of the other variable. With these variables, this suggests that effect of age on
actors’ income is different for male actors than for female actors.

• β1 is the effect of x1 on y when x2 is 0:
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– y = α+ β1x1 + β2 × 0 + β3x1 × 0
– y = α+ β1x1 + 0 + 0

• β2 is the effect of x2 on y when x1 is 0:

– y = α+ β1 × 0 + β2x2 + β3 × 0 × x2
– y = α+ β2x2 + 0

• When both x1 and x2 are not 0, β3 becomes important, and the effect of x1 now varies with the value
of x2. We can plug in 1 for x1 and simplify the equation as follows:

– y = α+ β1 × 1 + β2x2 + β3 × 1 × x2
– y = α+ β1 + β2x2 + β3 × x2
– y = (α+ β1) + (β2 + β3) × x2

With simulated data, this can be illustrated easily. I begin by simulating a dataset with 200 observations,
two predictors x1 (binary: male/female) and x2 (continuous: standardized and centered age), and create y
(continuous: income) as the linear combination of x1, x2, and an interaction term of the two predictors.

set.seed(123)
n.sample <- 200
x1 <- rbinom(n.sample, size = 1, prob = 0.5)
x2 <- runif(n.sample, -5, 5)
a <- 5
b1 <- 3
b2 <- 4
b3 <- -3
e <- rnorm(n.sample, 0, 5)
y <- a + b1 * x1 + b2 * x2 + b3 * x1 * x2 + e
sim.dat <- data.frame(y, x1, x2)

Before advancing, this is what the simulated data look like:

par(mfrow = c(1, 3))
hist(sim.dat$y)
hist(sim.dat$x1)
hist(sim.dat$x2)
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par(mfrow = c(1, 1))

For convenience, you could also use the multi.hist() function from the “psych” package. It automatically
adds a density curve (dashed line) and a normal density plot (dotted line).

# install.packages(psych)
library(psych)
multi.hist(sim.dat, nrow = 1)
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Fitting a model using what we know about the data-generating process gives us:

mod.sim <- lm(y ~ x1 * x2, dat = sim.dat)
summary(mod.sim)

##
## Call:
## lm(formula = y ~ x1 * x2, data = sim.dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.1974 -3.4874 -0.0738 3.4837 13.2178
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.7891 0.4924 9.726 < 2e-16 ***
## x1 3.8716 0.7081 5.467 1.38e-07 ***
## x2 3.9554 0.1663 23.790 < 2e-16 ***
## x1:x2 -2.9435 0.2421 -12.160 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.997 on 196 degrees of freedom
## Multiple R-squared: 0.7615, Adjusted R-squared: 0.7579
## F-statistic: 208.6 on 3 and 196 DF, p-value: < 2.2e-16

First, I plot the relationship between the continuous predictor x2 and y for all observations where x1 = 0. The
regression line is defined by an intercept α and a slope β2, as we calculated above. I can extract these from
the lm object above using the coef() function. I use the index in square brackets to extract the coefficient I
need.
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coef(mod.sim)

## (Intercept) x1 x2 x1:x2
## 4.789084 3.871614 3.955383 -2.943516

coef(mod.sim)[1]

## (Intercept)
## 4.789084

plot(x = sim.dat[sim.dat$x1 == 0, ]$x2, y = sim.dat[sim.dat$x1 == 0, ]$y,
col = "blue", pch = 19)

abline(a = coef(mod.sim)[1], b = coef(mod.sim)[3], col = "blue", pch = 19, lwd = 2)
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1. For all cases where x1 = 0, what is the relationship between x2 and y?

Next, we can add the data points where x1 = 1, and add the separate regression line for these points:

plot(x = sim.dat[sim.dat$x1 == 0, ]$x2, y = sim.dat[sim.dat$x1 == 0, ]$y,
pch = 19, xlab = "x2", ylab = "y", col = "blue")

abline(a = coef(mod.sim)[1], b = coef(mod.sim)[3], col = "blue", lwd = 2)
points(x = sim.dat[sim.dat$x1 == 1, ]$x2, y = sim.dat[sim.dat$x1 == 1, ]$y,

col = "red", pch = 19)
abline(a = coef(mod.sim)[1] + coef(mod.sim)[2], b = coef(mod.sim)[3] + coef(mod.sim)[4],

col = "red", lwd = 2)
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2. For all cases where x1 = 1, what is the relationship between x2 and y?

From this first exercise, you should take home a few things:

Specifying an interaction

• Although the tutorial does not discuss this, interaction terms should be included based on theory.
• In R, you specify an interaction term by putting an asterisk between the two constitutive terms: x1 *

x2

You always need to include the constitutive terms in your model.

See Brambor et al. (2006) for more details. What would it imply if your model only included β3x1x2?
Omitting a coefficient is equivalen to setting β1 = 0 and β2 = 0. See for yourself:

mod.sim2 <- lm(y ~ x1:x2, data = sim.dat)
summary(mod.sim2)

##
## Call:
## lm(formula = y ~ x1:x2, data = sim.dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.6719 -4.5727 0.6632 5.8826 24.6120
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.6555 0.7078 9.404 < 2e-16 ***
## x1:x2 0.9588 0.3513 2.729 0.00692 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.995 on 198 degrees of freedom
## Multiple R-squared: 0.03625, Adjusted R-squared: 0.03138
## F-statistic: 7.448 on 1 and 198 DF, p-value: 0.006924

plot(x = sim.dat[sim.dat$x1 == 0, ]$x2, y = sim.dat[sim.dat$x1 == 0, ]$y,
pch = 19, xlab = "x2", ylab = "y", col = "blue")

points(x = sim.dat[sim.dat$x1 == 1, ]$x2, y = sim.dat[sim.dat$x1 == 1, ]$y,
col = "red", pch = 19)

abline(a = coef(mod.sim2)[1], b = coef(mod.sim2)[2], lwd = 2)
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Note: R will automatically include the constitutive terms when you use the asterisk as above.

• y ~ x1 + x2 + x1 * x2 is equivalent to y ~ x1 * x2

Example 2: Two continuous variables

The first example illustrates the general logic of interaction terms. It carries over directly into the case of
an interaction term between two continuous variables. Let’s now simulate another (fake) dataset, with a
continuous outcome y being the income of professional baseball players. We can assume that x1 is a continuous
variable and distributed normally with a mean of 2 and a standard deviation of 5 (e.g., a standardized
measure of injury risk of each player). As previously, x2 is a continuous variable (such as standardized &
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centered age), ranging from −5 to +5. We might be thinking of a conditional effect, where older athletes
make more — but only if they are rated as low injury risk. Older athletes with higher injury risk might be
making less money. With this configuration,

• β1 is the effect of x1 on y when x2 is 0:

– y = α+ β1x1 + β2 × 0 + β3x1 × 0
– y = α+ β1x1 + 0 + 0

• β2 is the effect of x2 on y when x1 is 0:

– y = α+ β1 × 0 + β2x2 + β3 × 0 × x2
– y = α+ β2x2 + 0

• When both x1 and x2 are not 0, β3 becomes important, and the effect of x1 now varies with the value
of x2. We can again plug in 1 for x1 and simplify the equation as follows:

– y = α+ β1 × 1 + β2x2 + β3 × 1 × x2
– y = α+ β1 + β2x2 + β3 × x2
– y = (α+ β1) + (β2 + β3) × x2

• But x1 takes on many other values than just 1. The more general equation for y is then (cf. Brambor
et al. p. 11)

– y = α+ β1x1 + β2x2 + β3x1x2
– In this case, we cannot define just “two” equations (for x1 = 1 and x1 = 0). Instead, the effect of
x1 varies with x2, and vice versa.

– To express this, we use the term “marginal effects” or “conditional effects”: the effect of x1
conditional on the value of x2.

– This marginal effect for x1 is a slope, and this slope is the sum of the coefficient for x1 and the
product of β3 and the value of x2: β1 + β3 × x2.

– Similarly, the marginal effect for x2 is β2 + β3 × x1.

I use the same simulation setup above, but make x1 a continous variable, normally distributed with a mean
of 2 and a standard deviation of 5.

set.seed(123)
n.sample <- 200
x1 <- rnorm(n.sample, mean = 2, sd = 5)
x2 <- runif(n.sample, -5, 5)
a <- 5
b1 <- 3
b2 <- 4
b3 <- -3
e <- rnorm(n.sample, 0, 20)
y <- a + b1 * x1 + b2 * x2 + b3 * x1 * x2 + e
sim.dat2 <- data.frame(y, x1, x2)

Before advancing, this is what the simulated data look like:

multi.hist(sim.dat2, nrow = 1)

7



Histogram, Density, and Normal Fit

y

D
en

si
ty

−200 −100 0 100 200

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Histogram, Density, and Normal Fit

x1
D

en
si

ty

−10 −5 0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Histogram, Density, and Normal Fit

x2

D
en

si
ty

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

Fitting a model using what we know about the data-generating process gives us:

mod.sim3 <- lm(y ~ x1 * x2, dat = sim.dat2)
summary(mod.sim3)

##
## Call:
## lm(formula = y ~ x1 * x2, data = sim.dat2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -54.539 -12.129 0.986 12.424 51.132
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.4950 1.5581 4.168 4.60e-05 ***
## x1 2.5923 0.3059 8.475 5.59e-15 ***
## x2 4.1026 0.5325 7.704 6.41e-13 ***
## x1:x2 -3.0383 0.1017 -29.883 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.34 on 196 degrees of freedom
## Multiple R-squared: 0.8349, Adjusted R-squared: 0.8323
## F-statistic: 330.3 on 3 and 196 DF, p-value: < 2.2e-16

We can now calculate the effect of x1 on y at different levels of x2, say, across the range of x2 with increments
of 1. In R, I create this sequence using the seq() function.

x2.sim <- seq(from = -5, to = 5, by = 1)
x2.sim

## [1] -5 -4 -3 -2 -1 0 1 2 3 4 5

eff.x1 <- coef(mod.sim3)[2] + coef(mod.sim3)[4] * x2.sim

I can now list the effect of x1 at different levels of x2:
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eff.dat <- data.frame(x2.sim, eff.x1)
eff.dat

## x2.sim eff.x1
## 1 -5 17.7837936
## 2 -4 14.7454971
## 3 -3 11.7072007
## 4 -2 8.6689042
## 5 -1 5.6306077
## 6 0 2.5923113
## 7 1 -0.4459852
## 8 2 -3.4842817
## 9 3 -6.5225781
## 10 4 -9.5608746
## 11 5 -12.5991711

The object eff.x1 is now the coefficient of x1 at the respective levels of x2. x2 in this context is also called
the “moderator” or “moderating variable” because it moderates the effect of x1. You can see that x1 exhibits
a positive effect on y when x2 is approximately smaller than 1, at which point the effect of x1 on y turns
negative.

You can now visualize this, just as you did in the binary-continuous interaction above. Because x2, the
moderating variable, is now continuous, there is an (almost) infinite number of separate regression lines for
x1 and y: each individual value of x2 creates a separate regression line (with a separate slope coefficient).
The following scatterplot plots observations against their values on x1 and 7 and colors them based on their
value of x2, as in the previous example.

rbPal <- colorRampPalette(c("red", "blue"))
sim.dat2$x2.col <- rbPal(10)[as.numeric(cut(sim.dat2$x2,breaks = 10))]
plot(x = sim.dat2$x1, y = sim.dat2$y, col = sim.dat2$x2.col,

pch = 19, xlab = "x1", ylab = "y")
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Then, I’m adding 10 regression lines for the 10 values of x2 that I just calculated. The lines are also colored
according to the values of x2.

eff.dat$x2.col <- rbPal(10)[as.numeric(cut(eff.dat$x2,breaks = 10))]
plot(x = sim.dat2$x1, y = sim.dat2$y, col = sim.dat2$x2.col,

pch = 19, xlab = "x1", ylab = "y")
apply(eff.dat, 1, function(x) abline(a = coef(mod.sim3)[1], b = x[2], col = x[3]))
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## NULL

You can see that at low values of x2 (red), the relationship between x1 and y is positive (upward lines),
whereas at higher values of x2 (blue), the relationship is negative (downward lines).

Obtaining standard errors for marginal effects

As usual, you should evaluate the variance around coefficients. The online appendix to Brambor et al. (2006)
gives you the formula for this variance:

For the variance of the marginal/conditional effect of x1, use this equation:

Var = Var(β1) + x2
2 × Var(β3) + 2 × x2 × Cov(β1, β3)

Note that this equation makes use of the covariance of estimates. You learned about variance and covariance
on Day 10, and you can access the variance-covariance matrix with the vcov() function. You can then extract
cells of the matrix by using the familiar square brackets, where the first number stands for rows and the
second for columns.

vcov(mod.sim3)
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## (Intercept) x1 x2 x1:x2
## (Intercept) 2.4277430885 -0.1831417946 -0.0009989293 -0.0018730849
## x1 -0.1831417946 0.0935660448 -0.0018849223 0.0007608924
## x2 -0.0009989293 -0.0018849223 0.2835933457 -0.0200800974
## x1:x2 -0.0018730849 0.0007608924 -0.0200800974 0.0103373423

vcov(mod.sim3)[1, 1]

## [1] 2.427743

Now, you can obtain the standard error of the respective coefficients by taking the square root of the variance.

eff.dat$se.eff.x1 <- sqrt(vcov(mod.sim3)[2, 2] +
eff.dat$x2.sim^2 * vcov(mod.sim3)[4, 4] +
2 * eff.dat$x2.sim * vcov(mod.sim3)[2, 4])

eff.dat

## x2.sim eff.x1 x2.col se.eff.x1
## 1 -5 17.7837936 #FF0000 0.5868481
## 2 -4 14.7454971 #FF0000 0.5028682
## 3 -3 11.7072007 #E2001C 0.4266577
## 4 -2 8.6689042 #C60038 0.3631416
## 5 -1 5.6306077 #AA0055 0.3199713
## 6 0 2.5923113 #8D0071 0.3058857
## 7 1 -0.4459852 #71008D 0.3246924
## 8 2 -3.4842817 #5500AA 0.3714283
## 9 3 -6.5225781 #3800C6 0.4372270
## 10 4 -9.5608746 #1C00E2 0.5148307
## 11 5 -12.5991711 #0000FF 0.5996737

Plotting the marginal/conditional effect

It is often more useful to plot the marginal effect of a variable across the range of the second variable in the
interaction, rather than plotting separate regression lines as I did above. I strongly recommend this approach.
You already have the tools to do this:

plot(x = eff.dat$x2.sim, y = eff.dat$eff.x1, type = "l", xlab = "x2",
ylab = "Conditional effect of x1")

abline(h = 0, col = "grey")
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The solid line shows the conditional effect of x1 across the range of x2. You can add 95% confidence intervals
by plotting lines representing the conditional effect ±1.96 × SE.

plot(x = eff.dat$x2.sim, y = eff.dat$eff.x1, type = "l", xlab = "x2",
ylab = "Conditional effect of x1")

abline(h = 0, col = "grey")
lines(x = eff.dat$x2.sim, y = eff.dat$eff.x1 + 1.96 * eff.dat$se.eff.x1, lty = "dashed")
lines(x = eff.dat$x2.sim, y = eff.dat$eff.x1 - 1.96 * eff.dat$se.eff.x1, lty = "dashed")
abline(h = 0, lty = 2, col = "grey")
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Example 3: “Electoral Institutions, Unemployment and Extreme
Right Parties: A Correction.”

The final example uses real-world data on the elextoral success of extreme right-wing parties in 16 countries
over 102 elections. These data were used in Matt Golder’s BJPS article “Electoral Institutions, Unemployment
and Extreme Right Parties: A Correction.” (see Brambor et al. 2006 for the full citation).

ei.dat <- read.csv("http://www.jkarreth.net/files/golder.2003.csv")
summary(ei.dat)

## country year unemp enp
## denm :11 Min. :1970 Min. : 0.300 Min. :1.72
## aust : 7 1st Qu.:1975 1st Qu.: 2.125 1st Qu.:2.79
## belg : 7 Median :1980 Median : 5.300 Median :3.40
## gree : 7 Mean :1980 Mean : 5.811 Mean :3.59
## neth : 7 3rd Qu.:1985 3rd Qu.: 8.375 3rd Qu.:4.63
## port : 7 Max. :1990 Max. :20.800 Max. :5.10
## (Other):56
## lerps thresh
## Min. :0.0000 Min. : 0.670
## 1st Qu.:0.0000 1st Qu.: 2.600
## Median :0.4700 Median : 5.000
## Mean :0.9208 Mean : 8.807
## 3rd Qu.:1.8284 3rd Qu.: 9.875
## Max. :3.3142 Max. :35.000
##
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par(mfrow = c(2, 2))
hist(ei.dat$lerps)
hist(ei.dat$thresh)
hist(ei.dat$enp)
hist(ei.dat$unemp)
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par(mfrow = c(1, 1))

Variable Description
lerps Log of extreme right percentage support + 1
thresh Effective threshold of representation and exclusion in the political system
enp Effective number of parties
unemp Unemployment rate
country Country name
year Election year

This study aims to determine the relationship between electoral support for extreme right-wing parties (the
outcome variable), the threshold for representation in the political system (the first predictor), and the
effective number of parties (the second predictor). The author hypothesized that the effect of representation
thresholds might vary depending on the effective number of parties. The unemployment rate at the time of
the election is a control variable. Because elections in the same country might be subject to idiosyncratic
dynamics, the author includes a dummy variable for each country (cf. our discussion on Days 9 and 10).
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After fitting the model, I display the results using the familiar screenreg() function from the “texreg”
package. I make use of the omit.coef option to avoid printing of the coefficients for each country dummy
variable.

# Model 3
m3 <- lm(lerps ~ thresh + enp + thresh * enp + unemp + factor(country), data = ei.dat)
library(texreg)
screenreg(list(m3), omit.coef = "country")

##
## =======================
## Model 1
## -----------------------
## (Intercept) -0.97
## (1.10)
## thresh 0.27 ***
## (0.06)
## enp 1.16 **
## (0.43)
## unemp 0.07 ***
## (0.02)
## thresh:enp -0.10 ***
## (0.02)
## -----------------------
## R^2 0.85
## Adj. R^2 0.82
## Num. obs. 102
## =======================
## *** p < 0.001, ** p < 0.01, * p < 0.05

Rather than trying to interpret these results from the regression table, I calculate the marginal effect of
electoral thresholds across the range of the effective number of parties. This step is exactly analogous to
what I did with simulated data above.

thresh_sim <- seq(from = min(ei.dat$thresh), to = max(ei.dat$thresh), length.out = 50)
enp_sim <- seq(from = min(ei.dat$enp), to = max(ei.dat$enp), length.out = 50)
eff_thresh <- coef(m3)[2] + coef(m3)[20] * enp_sim
eff_thresh_se <- sqrt(vcov(m3)[2, 2] + enp_sim^2 * vcov(m3)[20, 20] + 2 * enp_sim * vcov(m3)[2, 20])
plot(x = enp_sim, y = eff_thresh, type = "l",

xlab = "Effective number of parties",
ylab = "Conditional effect of the electoral threshold")

lines(x = enp_sim, y = eff_thresh + 1.96 * eff_thresh_se, lty = "dashed")
lines(x = enp_sim, y = eff_thresh - 1.96 * eff_thresh_se, lty = "dashed")
abline(h = 0, col = "grey")
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3. What do you conclude from this figure? What do these results say about the author’s hypothesis?

Canned R functions to plot marginal effects in OLS

Rather than calculating marginal effects by hand, you might want to use R functions to plot marginal effects
with less effort.

DAintfun2()

One good option is Dave Armstrong’s DAintfun2() function, which is part of his “DAMisc” package. You
need to first install the package, then load it, and then specify the function with at least the following
arguments:

# install.packages("DAMisc")
library(DAMisc)
DAintfun2(m3, varnames = c("thresh", "enp"),

rug = TRUE, hist = TRUE)
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DAintfun2() by default plots both the marginal effect of the first variable as well as that of the second
variable. It also allows you to include an indicator of the actual distribution of the variables, via a histogram
or a rug plot. With these supplementary plots, you can immediately see whether the estimated effect of a
variable corresponds to real observations at that value of the moderating variable.

ggintfun()

A second function is ggintfun(), which I’ve written. I prefer working with ggplot and wanted to have a
customizeable version of a marginal effects plot; otherwise, DAintfun2()does everything I need. ggintfun()
uses the “ggplot2” package and you need to download it from my GitHub repository. This requires three
extra steps:

• Install the “devtools” package (only once).
• Load the “devtools” package (every time you want to use ggintfun()).
• Read the ggintfun() function into R using the source_url() function and the URL of the raw R

code for ggintfun() on my GitHub site (every time you want to use ggintfun()).

# install.packages("devtools")
library(devtools)
source_url("https://raw.githubusercontent.com/jkarreth/JKmisc/master/ggintfun.R")

The function then produces this plot, which shows the exact same information as your hand-crafted marginal
effects plot and the left panel of the DAintfun2()) plot from above.

ggintfun(m3, varnames = c("thresh", "enp"),
varlabs = c("Electoral threshold", "Effective number of parties"),
title = FALSE, rug = TRUE,
twoways = FALSE)
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